Communications Toolbox ${ }^{\text {TM }} 4$ Reference

MATLAB ${ }^{\circ}$

How to Contact The MathWorks

www.mathworks.com
comp.soft-sys.matlab
Web
www.mathworks.com/contact_TS.html Technical Support
suggest@mathworks.com
Product enhancement suggestions
bugs@mathworks.com
doc@mathworks.com
service@mathworks.com
info@mathworks.com

Bug reports
Documentation error reports
Order status, license renewals, passcodes
Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)
The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

Communications Toolbox ${ }^{\text {TM }}$ Reference

© COPYRIGHT 1996-2009 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used or copied only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through the federal government of the United States. By accepting delivery of the Program or Documentation, the government hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and Documentation by the federal government (or other entity acquiring for or through the federal government) and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is inconsistent in any respect with federal procurement law, the government agrees to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be trademarks or registered trademarks of their respective holders.

Patents

The MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for more information.

Revision History

April 1996	First printing	Version 1.0
May 1997	Second printing	Revised for Version 1.1 (MATLAB 5.0)
September 2000	Third printing	Revised for Version 2.0 (Release 12)
May 2001	Online only	Revised for Version 2.0.1 (Release 12.1)
July 2002	Fourth printing	Revised for Version 2.1 (Release 13)
June 2004	Fifth printing	Revised for Version 3.0 (Release 14)
October 2004	Online only	Revised for Version 3.0.1 (Release 14SP1)
March 2005	Online only	Revised for Version 3.1 (Release 14SP2)
September 2005	Online only	Revised for Version 3.2 (Release 14SP3)
October 2005	Reprint	Version 3.0 (Notice updated)
March 2006	Online only	Revised for Version 3.3 (Release 2006a)
September 2006	Sixth printing	Revised for Version 3.4 (Release 2006b)
March 2007	Online only	Revised for Version 3.5 (Release 2007a)
September 2007	Online only	Revised for Version 4.0 (Release 2007b)
March 2008	Online only	Revised for Version 4.1 (Release 2008a)
October 2008	Online only	Revised for Version 4.2 (Release 2008b)
March 2009	Online only	Revised for Version 4.3 (Release 2009a)

Function Reference

Signal Sources 1-2
Performance Evaluation 1-2
Source Coding 1-3
Error-Control Coding 1-4
Interleaving/Deinterleaving 1-5
Analog Modulation/Demodulation 1-6
Digital Modulation/Demodulation 1-7
Pulse Shaping 1-9
Filters 1-9
Lower-Level Filters 1-9
Channels 1-9
Equalizers 1-11
Galois Field 1-11
MATLAB Functions and Operators 1-12
Galois Fields of Odd Characteristic 1-13
Utilities 1-14
MATLAB Utilities 1-16

Functions - Alphabetical List
 2

Index

Function Reference

Signal Sources (p. 1-2)
Performance Evaluation (p. 1-2)

Source Coding (p. 1-3)

Error-Control Coding (p. 1-4)
Interleaving/Deinterleaving (p. 1-5)
Analog Modulation/Demodulation (p. 1-6)

Digital Modulation/Demodulation (p. 1-7)

Pulse Shaping (p. 1-9)
Filters (p. 1-9)
Channels (p. 1-9)

Equalizers (p. 1-11)
Galois Field (p. 1-11)

Galois Fields of Odd Characteristic (p. 1-13)

Utilities (p. 1-14)
GUI (p. 1-16)

Sources of random signals
Analyzing and visualizing performance of a communication system
Quantization, companders, and other kinds of source coding
Block and convolutional coding
Block and convolutional interleaving
Passband amplitude, frequency, and phase modulation
Baseband digital modulation

Oversampling and shaping a signal
Raised cosine and Hilbert filters
Channel models for real, complex, and binary signals
Adaptive and MLSE equalizers
Manipulating elements of finite fields of even order

Manipulating elements of finite fields of odd order
Miscellaneous relevant functions
Bit error rate analysis tool

Signal Sources

```
commsrc.pattern
randerr
randint
randsrc
wgn
```

Construct pattern generator object Generate bit error patterns Generate matrix of uniformly distributed random integers Generate random matrix using prescribed alphabet

Generate white Gaussian noise

Performance Evaluation

```
berawgn
bercoding
berconfint
berfading
berfit
bersync
biterr
commmeasure.EVM
commmeasure.MER
commscope
```

Bit error rate (BER) for uncoded AWGN channels

Bit error rate (BER) for coded AWGN channels

Bit error rate (BER) and confidence interval of Monte Carlo simulation

Bit error rate (BER) for Rayleigh and Rician fading channels

Fit curve to nonsmooth empirical bit error rate (BER) data

Bit error rate (BER) for imperfect synchronization

Compute number of bit errors and bit error rate (BER)

Create EVM measurement object
Create MER measurement object
Package of communications scope classes

```
commscope.eyediagram
commscope.ScatterPlot
distspec
eyediagram
EyeScope
noisebw
scatterplot
semianalytic
symerr
```


Source Coding

arithdeco
arithenco
compand
dpcmdeco
dpcmenco
dpcmopt
huffmandeco

Eye diagram analysis
Create Scatter Plot scope
Compute distance spectrum of convolutional code

Generate eye diagram
Launch eye diagram scope for eye diagram object H

Equivalent noise bandwidth of filter Generate scatter plot

Calculate bit error rate (BER) using semianalytic technique

Compute number of symbol errors and symbol error rate

Decode binary code using arithmetic decoding

Encode sequence of symbols using arithmetic coding

Source code mu-law or A-law compressor or expander

Decode using differential pulse code modulation

Encode using differential pulse code modulation

Optimize differential pulse code modulation parameters

Huffman decoder

huffmandict
huffmanenco
lloyds
quantiz

Error-Control Coding

```
bchdec
bchenc
bchgenpoly
bchnumerr
convenc
cyclgen
cyclpoly
decode
dvbs2ldpc
encode
fec.bchdec
fec.bchenc
fec.ldpcdec
fec.ldpcenc
```

Generate Huffman code dictionary for source with known probability model

Huffman encoder
Optimize quantization parameters using Lloyd algorithm

Produce quantization index and quantized output value

BCH decoder
BCH encoder
Generator polynomial of BCH code
Number of correctable errors for BCH code

Convolutionally encode binary data
Produce parity-check and generator matrices for cyclic code

Produce generator polynomials for cyclic code

Block decoder
Low-density parity-check codes from DVB-S. 2 standard

Block encoder
Construct BCH decoder object
Construct BCH encoder object
Construct LDPC decoder object
Construct LDPC encoder object

```
fec.rsdec
fec.rsenc
gen2par
gfweight
hammgen
rsdec
rsdecof
rsenc
rsencof
rsgenpoly
syndtable
vitdec
```


Interleaving/Deinterleaving

algdeintrlv
algintrlv
convdeintrlv

Restore ordering of symbols using algebraically derived permutation table

Reorder symbols using algebraically derived permutation table

Restore ordering of symbols using shift registers

```
convintrlv
deintrlv
heldeintrlv
helintrlv
helscandeintrlv
helscanintrlv
intrlv
matdeintrlv
matintrlv
muxdeintrlv
muxintrlv
randdeintrlv
randintrlv
```


Analog Modulation/Demodulation

amdemod
ammod
fmdemod
fmmod

Amplitude demodulation
Amplitude modulation
Frequency demodulation
Frequency modulation

```
pmdemod
pmmod
ssbdemod
ssbmod
```


Digital Modulation/Demodulation

dpskdemod
dpskmod
fskdemod
fskmod
genqamdemod
genqammod
modem
modem.dpskdemod
modem.dpskmod
modem.genqamdemod
modem.genqammod
modem.mskdemod
modem.mskmod

Phase demodulation
Phase modulation
Single sideband amplitude demodulation
Single sideband amplitude modulation

dpskdemod	Differential phase shift keying demodulation
dpskmod	Differential phase shift keying modulation
fskdemod	Frequency shift keying demodulation fskmod genqamdemod
Frequency shift keying modulation General quadrature amplitude demodulation	
genqammod	General quadrature amplitude modulation
modem	Package of modem classes
modem.dpskdemod	Construct DPSK demodulator object
modem. dpskmod	Construct DPSK modulator object
modem.genqamdemod	Construct General QAM
demodulator object	

modem. oqpskdemod	Construct OQPSK demodulator object
modem. oqpskmod	Construct OQPSK modulator object
modem. pamdemod	Construct PAM demodulator object
modem. pammod	Construct PAM modulator object
modem.pskdemod	Construct PSK demodulator object
modem.pskmod	Construct PSK modulator object
modem. qamdemod	Construct QAM demodulator object
modem. qammod	Construct QAM modulator object
modnorm	Scaling factor for normalizing modulation output
mskdemod	Minimum shift keying demodulation
mskmod	Minimum shift keying modulation
oqpskdemod	Offset quadrature phase shift keying demodulation
oqpskmod	Offset quadrature phase shift keying modulation
pamdemod	Pulse amplitude demodulation
pammod	Pulse amplitude modulation
pskdemod	Phase shift keying demodulation
pskmod	Phase shift keying modulation
qamdemod	Quadrature amplitude demodulation
qammod	Quadrature amplitude modulation

Pulse Shaping

```
intdump
rcosflt
rectpulse
```


Filters

hank2sys
hilbiir
rcosine

Lower-Level Filters

```
rcosfir
rcosiir
```


Channels

```
awgn
bsc
doppler
doppler.ajakes
```

Integrate and dump
Filter input signal using raised cosine filter

Rectangular pulse shaping

Convert Hankel matrix to linear system model
Design Hilbert transform IIR filter
Design raised cosine filter

Design raised cosine finite impulse response (FIR) filter

Design raised cosine infinite impulse response (IIR) filter

Add white Gaussian noise to signal
Model binary symmetric channel
Package of Doppler classes
Construct asymmetrical Doppler spectrum object

doppler.bell	Construct bell-shaped Doppler spectrum object
doppler.bigaussian	Construct bi-Gaussian Doppler spectrum object
doppler.flat	Construct flat Doppler spectrum object
doppler.gaussian	Construct Gaussian Doppler spectrum object
doppler.jakes	Construct Jakes Doppler spectrum object
doppler.rjakes	Construct restricted Jakes Doppler spectrum object
doppler.rounded	Construct rounded Doppler spectrum object
filter (channel)	Filter signal with channel object
mimochan	Create MIMO fading channel object
plot (channel)	Plot channel characteristics with channel visualization tool
rayleighchan	Construct Rayleigh fading channel object
reset (channel)	Reset channel object
ricianchan	Construct Rician fading channel object
stdchan	Construct channel object from set of standardized channel models

Equalizers

cma	Construct constant modulus algorithm (CMA) object
dfe	Construct decision-feedback equalizer object
equalize	Equalize signal using equalizer object
lineareq	Construct linear equalizer object lms mlseeq
Construct least mean square (LMS) adaptive algorithm object	
normlms	Equalize linearly modulated signal using Viterbi algorithm
reset (equalizer)	Construct normalized least mean square (LMS) adaptive algorithm object
signlms	Reset equalizer object Construct recursive least squares
varlms	(RLS) adaptive algorithm object
Construct signed least mean square	

Galois Field

convmtx
cosets

Convolution matrix of Galois field vector

Produce cyclotomic cosets for Galois field

```
dftmtx
fft
filter (gf)
gf
gftable
ifft
isprimitive
log
minpol
mldivide
primpoly
```


MATLAB Functions and Operators

+	Addition and subtraction of Galois arrays
* $/ 1$	Matrix multiplication and division of Galois arrays
.*.1.1	Elementwise multiplication and division of Galois arrays
^	Matrix exponentiation of Galois array
.^	Elementwise exponentiation of Galois array
' .'	Transpose of Galois array
==, ~=	Relational operators for Galois arrays
all	True if all elements of a Galois vector are nonzero
any	True if any element of a Galois vector is nonzero
conv	Convolution of Galois vectors

deconv	Deconvolution and polynomial division
det	Determinant of square Galois matrix diag
Diagonal Galois matrices and diagonals of a Galois matrix	
inv	Inverse of Galois matrix
length	True for empty Galois arrays
lu	Length of Galois vector
polyval	Lower-upper triangular factorization of Galois array
rank	Evaluate polynomial in Galois field
reshape	Rank of a Galois array
roots	Reshape Galois array
size	Find polynomial roots across a Galois field
tril	Size of Galois array
triu	Extract lower triangular part of Galois array

Galois Fields of Odd Characteristic

```
gfadd
gfconv
gfcosets
gfdeconv
gfdiv
gffilter
```

Add polynomials over Galois field
Multiply polynomials over Galois field

Produce cyclotomic cosets for Galois field

Divide polynomials over Galois field
Divide elements of Galois field
Filter data using polynomials over prime Galois field

```
gflineq
gfminpol
gfmul
gfpretty
gfprimck
gfprimdf
gfprimfd
gfrank
gfrepcov
gfroots
gfsub
gftrunc
gftuple
```


Utilities

alignsignals
bi2de

Find particular solution of $A x=b$ over prime Galois field

Find minimal polynomial of Galois field element

Multiply elements of Galois field
Polynomial in traditional format
Check whether polynomial over Galois field is primitive

Provide default primitive polynomials for Galois field

Find primitive polynomials for Galois field

Compute rank of matrix over Galois field

Convert one binary polynomial representation to another

Find roots of polynomial over prime Galois field

Subtract polynomials over Galois field

Minimize length of polynomial representation

Simplify or convert Galois field element formatting

Align two signals by delaying earliest signal

Convert binary vectors to decimal numbers

bin2gray	Convert positive integers into corresponding Gray-encoded integers
commsrc.pn	Create PN sequence generator package
de2bi	Convert decimal numbers to binary vectors
finddelay	Estimate delay(s) between signals
gray2bin	Convert Gray-encoded positive integers to corresponding Gray-decoded integers
iscatastrophic	True for trellis corresponding to catastrophic convolutional code
istrellis	True for valid trellis structure Generalized Marcum Q function
marcumq	Convert mask vector to shift for shift register configuration
mask2shift	Convert octal to decimal numbers
poly2trellis	Convert convolutional code polynomials to trellis description
qfunc	Q function
qfuncinv	Inverse Q function
seqgen	Sequence generator package
seqgen.pn	Construct default PN sequence generator object
shift2mask	Convert shift to mask vector for shift register configuration
vec2mat	Convert vector into matrix

MATLAB Utilities

erf	Error function
erfc	Complementary error function

GUI

bertool
Open bit error rate analysis GUI (BERTool)

Functions - Alphabetical
List

algdeintrlv

Purpose

Syntax

Description

Examples

Restore ordering of symbols using algebraically derived permutation table

```
deintrlvd = algdeintrlv(data,num,'takeshita-costello',k,h)
deintrlvd = algdeintrlv(data,num,'welch-costas',alph)
```

deintrlvd = algdeintrlv(data, num, 'takeshita-costello', k, h) restores the original ordering of the elements in data using a permutation table that is algebraically derived using the Takeshita-Costello method. num is the number of elements in data if data is a vector, or the number of rows of data if data is a matrix with multiple columns. In the Takeshita-Costello method, num must be a power of 2 . The multiplicative factor, k, must be an odd integer less than num, and the cyclic shift, h, must be a nonnegative integer less than num. If data is a matrix with multiple rows and columns, the function processes the columns independently.
deintrlvd = algdeintrlv(data, num, 'welch-costas',alph) uses the Welch-Costas method. In the Welch-Costas method, num +1 must be a prime number. alph is an integer between 1 and num that represents a primitive element of the finite field GF(num +1).

To use this function as an inverse of the algintrlv function, use the same inputs in both functions, except for the data input. In that case, the two functions are inverses in the sense that applying algintrlv followed by algdeintrlv leaves data unchanged.

The code below uses the Takeshita-Costello method of algintrlv and algdeintrlv.

```
num = 16; % Power of 2
```

num = 16; % Power of 2
ncols = 3; % Number of columns of data to interleave
ncols = 3; % Number of columns of data to interleave
data = rand(num,ncols); % Random data to interleave
data = rand(num,ncols); % Random data to interleave
k = 3;
k = 3;
h = 4;
h = 4;
intdata = algintrlv(data,num,'takeshita-costello',k,h);
intdata = algintrlv(data,num,'takeshita-costello',k,h);
deintdata = algdeintrlv(intdata,num,'takeshita-costello',k,h);

```
deintdata = algdeintrlv(intdata,num,'takeshita-costello',k,h);
```

See Also
References
algintrlv, "Interleaving"
[1] Heegard, Chris, and Stephen B. Wicker, Turbo Coding, Boston, Kluwer Academic Publishers, 1999.
[2] Takeshita, O. Y., and D. J. Costello, Jr., "New Classes Of Algebraic Interleavers for Turbo-Codes," Proc. 1998 IEEE International Symposium on Information Theory, Boston, Aug. 16-21, 1998. p. 419.

Purpose
Reorder symbols using algebraically derived permutation table

Syntax

Description

Examples

intrlvd = algintrlv(data, num, 'takeshita-costello', k, h)
intrlvd = algintrlv(data, num, 'welch-costas', alph)
intrlvd = algintrlv(data, num, 'takeshita-costello',k,h) rearranges the elements in data using a permutation table that is algebraically derived using the Takeshita-Costello method. num is the number of elements in data if data is a vector, or the number of rows of data if data is a matrix with multiple columns. In the Takeshita-Costello method, num must be a power of 2 . The multiplicative factor, k, must be an odd integer less than num, and the cyclic shift, h, must be a nonnegative integer less than num. If data is a matrix with multiple rows and columns, the function processes the columns independently.
intrlvd = algintrlv(data, num, 'welch-costas', alph) uses the Welch-Costas method. In the Welch-Costas method, num+1 must be a prime number. alph is an integer between 1 and num that represents a primitive element of the finite field GF(num +1). This means that every nonzero element of GF(num+1) can be expressed as alph raised to some integer power.

This example illustrates how to use the Welch-Costas method of algebraic interleaving.

1 Define num and the data to interleave.

```
num = 10; % Integer such that num+1 is prime
ncols = 3; % Number of columns of data to interleave
data = randint(num,ncols,num); % Random data to interleave
```

2 Find primitive polynomials of the finite field GF(num+1). The gfprimfd function represents each primitive polynomial as a row containing the coefficients in order of ascending powers.

```
pr = gfprimfd(1,'all',num+1) % Primitive polynomials of GF(num+1)
pr =
```

31
41
$5 \quad 1$
$9 \quad 1$

3 Notice from the output that pr has two columns and that the second column consists solely of 1 s . In other words, each primitive polynomial is a monic degree-one polynomial. This is because num +1 is prime. As a result, to find the primitive element that is a root of each primitive polynomial, find a root of the polynomial by subtracting the first column of pr from num +1 .

```
primel = (num+1)-pr(:,1) % Primitive elements of GF(num+1)
primel =
```


8

7
6
2
4 Now define alph as one of the elements of primel and use algintrlv.

```
alph = primel(1); % Choose one primitive element.
intrlvd = algintrlv(data,num,'Welch-Costas',alph); % Interleave.
```


Algorithm

- A Takeshita-Costello interleaver uses a length-num cycle vector whose nth element is $\bmod \left(k^{*}(n-1) * n / 2\right.$, num) for integers n between 1 and num. The function creates a permutation vector by listing, for each element of the cycle vector in ascending order, one plus the element's successor. The interleaver's actual permutation table is the result of shifting the elements of the permutation vector left by h. (The function performs all computations on numbers and indices modulo num.)
- A Welch-Costas interleaver uses a permutation that maps an integer K to $\bmod \left(A^{K}, n u m+1\right)-1$.

algintrlv

See Also algdeintrlv, "Interleaving"
References [1] Heegard, Chris, and Stephen B. Wicker, Turbo Coding, Boston, Kluwer Academic Publishers, 1999.
[2] Takeshita, O. Y., and D. J. Costello, Jr., "New Classes Of Algebraic Interleavers for Turbo-Codes," Proc. 1998 IEEE International
Symposium on Information Theory, Boston, Aug. 16-21, 1998. p. 419.

Purpose
Syntax
Description

Align two signals by delaying earliest signal
[Xa Ya] = alignsignals(X, Y)
[Xa Ya] = alignsignals(X,Y,MAXLAG)
[Xa Ya] = alignsignals(X,Y,MAXLAG,'truncate')
[Xa Ya D] = alignsignals(...)
[Xa Ya] = alignsignals (X, Y), where X and Y are row or column vectors of length $L X$ and $L Y$, respectively, aligns the two vectors by estimating the delay D between the two. If Y is delayed with respect to X, D is positive, and X is delayed by D samples. If Y is advanced with respect to X, D is negative, and Y is delayed by $-D$ samples. The aligned signals $X a$ and $Y a$ are returned. Delays in X and Y can be introduced by pre-pending zeros.
[Xa Ya] = alignsignals($\mathrm{X}, \mathrm{Y}, \mathrm{MAXLAG}$) uses MAXLAG as the maximum window size used to find the estimated delay D between X and Y. MAXLAG is an integer-valued scalar. By default, MAXLAG is equal to $\operatorname{MAX}(L X$, $L Y)-1$. If MAXLAG is input as [], it is replaced by the default value. If MAXLAG is negative, it is replaced by its absolute value. If MAXLAG is not integer-valued, or is complex, Inf, or NaN, then alignsignals returns an error.
[Xa Ya] = alignsignals(X,Y,MAXLAG,'truncate') keeps the lengths of $X a$ and $Y a$ the same as those of X and Y, respectively. If D is positive, D zeros are pre-pended to X, and the last D samples of X are truncated. If D is negative, $-D$ zeros are pre-pended to Y , and the last $-D$ samples of Y are truncated. Note: If $D \geq L X, X$ a will consist of $L X$ zeros, and all samples of X are lost. Similarly, if $-D \geq L Y, Y a$ will consist of $L Y$ zeros, and all samples of Y are lost. To avoid assigning a specific value to MAXLAG when using the 'truncate' option, set MAXLAG to [].
[Xa Ya D] = alignsignals(...) returns the estimated delay D.

alignsignals

Theory and
Algorithm

Examples

The theory on delay estimation can be found in the specification of the finddelay function (see "Theory and Algorithm" on page 2-265).

The alignsignals function simply uses the estimated delay to delay the earliest signal such that the two signals have the same starting point.

As specified for the finddelay function, the pair of signals need not be exact delayed copies of each other. However, the signals can be successfully aligned only if there is sufficient correlation between them.

The following illustrates how X is aligned when Y is delayed with respect to X by two samples.

```
X = [lllll
Y = [0 0 1 2 3];
MAXLAG = 2;
[Xa Ya D] = alignsignals(X, Y, MAXLAG)
```

The resulting values are:

```
Xa = [0 0 1 2 3]
Ya = [0 0 1 2 3]
D = 2
```

The following is a case where Y is advanced with respect to X by three samples.

```
X = [0 0 0 1 2 3 0 0]';
Y = [1 2 3 0]';
[Xa Ya] = alignsignals(X, Y)
```

The resulting values are:

```
Xa = [0 0 0 1 2 3 0 0]'
Ya = [0 0 0 1 2 3 0]'
```

The following illustrates a signal Y that is aligned with respect to X but is noisy.

```
X = [llllllll}
Y = [llllllllll}0.02 0.12 1.08 2.21 2.95 -0.09];'
[Xa Ya D] = alignsignals(X, Y)
```

The resulting values are:

```
Xa = [lllllll}
Ya = [0.02 0.12 1.08 2.21 2.95 -0.09];
D = 0
```

The following shows that when Y is a periodic repetition of X, the smallest possible delay is returned.

```
X = [0 1 2 3];
Y = [1 2 3 0 0 0 0 1 2 3 0 0];
[Xa Ya D] = alignsignals(X, Y)
```

The resulting values are:

```
Xa = [lllll
Ya = [0 1 2 3 0 0 0 0 1 2 3 0 0];
D = -1
```

Here is an example of alignsignals using the 'truncate' option.

```
X = [llll
Y = [0 0 1 2 3];
[Xa Ya D] = alignsignals(X, Y, [], 'truncate')
```

The resulting values are:

```
Xa = [0 0 1];
Ya = [0 0 1 2 3];
D = 2
```

In the case where using the 'truncate' option ends up truncating all the original data of X , a warning will be issued. The following example makes MATLAB issue such a warning.

alignsignals

```
X = [llll
Y = [0 0 0 0 1 2 3];
[Xa Ya D] = alignsignals(X, Y, [], 'truncate')
```

See Also finddelay

Purpose	Amplitude demodulation
Syntax	$z=\operatorname{amdemod}(y, F c, F s)$
	$z=\operatorname{amdemod}(y, F c, F s$, ini_phase $)$
	$z=\operatorname{amdemod}(y, F c, F s$, ini_phase, carramp $)$
z	$=\operatorname{amdemod}\left(y, F c, F s, i n i _\right.$phase, carramp, num, den $)$

$z=\operatorname{amdemod}(y, F c, F s)$ demodulates the amplitude modulated signal y from a carrier signal with frequency Fc (Hz). The carrier signal and y have sample frequency Fs (Hz). The modulated signal y has zero initial phase and zero carrier amplitude, so it represents suppressed carrier modulation. The demodulation process uses the lowpass filter specified by [num,den] = butter(5,Fc*2/Fs).

Note The Fc and Fs arguments must satisfy Fs $>2(F c+B W)$, where BW is the bandwidth of the original signal that was modulated.
z = amdemod(y,Fc,Fs,ini_phase) specifies the initial phase of the modulated signal in radians.
z = amdemod(y,Fc,Fs,ini_phase,carramp) demodulates a signal that was created via transmitted carrier modulation instead of suppressed carrier modulation. carramp is the carrier amplitude of the modulated signal.
z = amdemod(y,Fc,Fs,ini_phase, carramp, num,den) specifies the numerator and denominator of the lowpass filter used in the demodulation.

Examples

The code below illustrates the use of a nondefault filter.

```
t = .01;
Fc = 10000; Fs = 80000;
t = [0:1/Fs:0.01]';
s = sin(2*pi*300*t)+2*sin(2*pi*600*t); % Original signal
```

```
[num,den] = butter(10,Fc*2/Fs); % Lowpass filter
y1 = ammod(s,Fc,Fs); % Modulate.
s1 = amdemod(y1,Fc,Fs,0,0,num,den); % Demodulate.
```

See Also
ammod, ssbdemod, fmdemod, pmdemod, "Modulation"

Purpose Amplitude modulation

Syntax \quad| y | $=\operatorname{ammod}(x, F c, F s)$ |
| ---: | :--- |
| y | $=\operatorname{ammod}(x, F c, F s$, ini_phase $)$ |
| y | $=\operatorname{ammod}(x, F c, F s$, ini_phase, carramp $)$ |

Description

Examples

$y=\operatorname{ammod}(x, F c, F s)$ uses the message signal x to modulate a carrier signal with frequency $\mathrm{Fc}(\mathrm{Hz})$ using amplitude modulation. The carrier signal and x have sample frequency $\mathrm{Fs}(\mathrm{Hz})$. The modulated signal has zero initial phase and zero carrier amplitude, so the result is suppressed-carrier modulation.

Note The x, Fc, and Fs input arguments must satisfy Fs $>2(\mathrm{Fc}+\mathrm{BW})$, where $B W$ is the bandwidth of the modulating signal x.
$y=\operatorname{ammod}\left(x, F c, F s, i n i _p h a s e\right)$ specifies the initial phase in the modulated signal y in radians.
y = ammod(x,Fc,Fs,ini_phase,carramp) performs transmitted-carrier modulation instead of suppressed-carrier modulation. The carrier amplitude is carramp.

The example below compares double-sideband and single-sideband amplitude modulation.

```
\% Sample the signal 100 times per second, for 2 seconds.
Fs = 100;
t = [0:2*Fs+1]'/Fs;
Fc = 10; \% Carrier frequency
\(x=\sin (2 * p i * t) ;\) \% Sinusoidal signal
\% Modulate \(x\) using single- and double-sideband AM.
ydouble \(=\operatorname{ammod}(x, F c, F s)\);
ysingle = ssbmod(x,Fc,Fs);
```

```
% Compute spectra of both modulated signals.
zdouble = fft(ydouble);
zdouble = abs(zdouble(1:length(zdouble)/2+1));
frqdouble = [0:length(zdouble)-1]*Fs/length(zdouble)/2;
zsingle = fft(ysingle);
zsingle = abs(zsingle(1:length(zsingle)/2+1));
frqsingle = [0:length(zsingle)-1]*Fs/length(zsingle)/2;
% Plot spectra of both modulated signals.
figure;
subplot(2,1,1); plot(frqdouble,zdouble);
title('Spectrum of double-sideband signal');
subplot(2,1,2); plot(frqsingle,zsingle);
title('Spectrum of single-sideband signal');
```


amdemod, ssbmod, fmmod, pmmod, "Modulation"

Purpose Decode binary code using arithmetic decoding

Syntax

dseq $=$ arithdeco(code,counts,len)
dseq $=$ arithdeco (code, counts,len) decodes the binary arithmetic code in the vector code to recover the corresponding sequence of len symbols. The vector counts represents the source's statistics by listing the number of times each symbol of the source's alphabet occurs in a test data set. This function assumes that the data in code was produced by the arithenco function.

Examples
This example is similar to the example on the arithenco reference page, except that it uses arithdeco to recover the original sequence.

```
counts = [99 1]; % A one occurs 99% of the time.
len = 1000;
seq = randsrc(1,len,[1 2; .99 .01]); % Random sequence
code = arithenco(seq,counts);
dseq = arithdeco(code,counts,length(seq)); % Decode.
isequal(seq,dseq) % Check that dseq matches the original seq.
```

The output is
ans =

1

Algorithm
This function uses the algorithm described in [1].

See Also

References

arithenco, "Arithmetic Coding"
[1] Sayood, Khalid, Introduction to Data Compression, San Francisco, Morgan Kaufmann, 2000.

```
Purpose Encode sequence of symbols using arithmetic coding
Description
code = arithenco(seq, counts) generates the binary arithmetic code corresponding to the sequence of symbols specified in the vector seq. The vector counts represents the source's statistics by listing the number of times each symbol of the source's alphabet occurs in a test data set.
```

Examples

```
This example illustrates the compression that arithmetic coding can accomplish in some situations. A source has a two-symbol alphabet and produces a test data set in which \(99 \%\) of the symbols are 1s. Encoding 1000 symbols from this source produces a code vector having many fewer than 1000 elements. The actual number of elements in code varies, depending on the particular random sequence contained in seq.
```

```
counts = [99 1]; % A one occurs 99% of the time.
```

counts = [99 1]; % A one occurs 99% of the time.
len = 1000;
len = 1000;
seq = randsrc(1,len,[1 2; .99 .01]); % Random sequence
seq = randsrc(1,len,[1 2; .99 .01]); % Random sequence
code = arithenco(seq,counts);
code = arithenco(seq,counts);
s = size(code) % length of code is only 8.3% of length of seq.

```
s = size(code) % length of code is only 8.3% of length of seq.
```

Algorithm

This function uses the algorithm described in [1].
See Also arithdeco, "Arithmetic Coding"

References

The output is
s =

183

[^0]Purpose
Syntax
\section*{Description}

Add white Gaussian noise to signal

```
y = awgn(x,snr)
y = awgn(x,snr,sigpower)
y = awgn(x,snr,'measured')
y = awgn(x,snr,sigpower,state)
y = awgn(x,snr,'measured',state)
y = awgn(...,powertype)
```

$y=\operatorname{awgn}(x, s n r)$ adds white Gaussian noise to the vector signal x. The scalar snr specifies the signal-to-noise ratio per sample, in dB. If x is complex, awgn adds complex noise. This syntax assumes that the power of x is 0 dBW .
$y=\operatorname{awgn}(x, s n r$, sigpower $)$ is the same as the syntax above, except that sigpower is the power of x in $d B W$.
$y=\operatorname{awgn}(x, s n r, ' m e a s u r e d ')$ is the same as $y=a w g n(x, s n r)$, except that awgn measures the power of x before adding noise.
y = awgn($x, s n r, s i g p o w e r, s t a t e)$ is the same as $y=$ awgn ($x, s n r$, sigpower), except that awgn first resets the state of the normal random number generator randn to the integer state.
$y=\operatorname{awgn}(x, s n r$, 'measured',state) is the same as $y=$ awgn (x, snr, 'measured') , except that awgn first resets the state of normal random number generator randn to the integer state.
$\mathrm{y}=\operatorname{awgn}(. .$. , powertype $)$ is the same as the previous syntaxes, except that the string powertype specifies the units of snr and sigpower. Choices for powertype are 'db' and 'linear'. If powertype is ' db ', then $s n r$ is measured in dB and sigpower is measured in dBW . If powertype is 'linear', snr is measured as a ratio and sigpower is measured in watts.

Relationship Among SNR, $\mathrm{E}_{\mathbf{s}} / \mathbf{N}_{\mathbf{0}}$, and $\mathrm{E}_{\mathrm{b}} / \mathbf{N}_{\mathbf{0}}$

For the relationships between SNR and other measures of the relative power of the noise, see "Describing the Noise Level of an AWGN Channel".

Examples The commands below add white Gaussian noise to a sawtooth signal. It then plots the original and noisy signals.

```
t = 0:.1:10;
x = sawtooth(t); % Create sawtooth signal.
y = awgn(x,10,'measured'); % Add white Gaussian noise.
plot(t,x,t,y) % Plot both signals.
legend('Original signal','Signal with AWGN');
```


Several other examples that illustrate the use of awgn are in "Getting Started". The following demos also use awgn: basicsimdemo, vitsimdemo, and scattereyedemo.

See Also
wgn, randn, bsc, "AWGN Channel"

Purpose

Syntax

Description

BCH decoder

Note bchdec will be removed in a future release. Use fec.bchdec instead.

```
decoded = bchdec(code,n,k)
decoded = bchdec(...,paritypos)
[decoded,cnumerr] = bchdec(...)
[decoded,cnumerr,ccode] = bchdec(...)
```

decoded $=\mathrm{bchdec}(\operatorname{code}, \mathrm{n}, \mathrm{k})$ attempts to decode the received signal in code using an [n, k] BCH decoder with the narrow-sense generator polynomial. code is a Galois array of symbols over GF(2). Each n-element row of code represents a corrupted systematic codeword, where the parity symbols are at the end and the leftmost symbol is the most significant symbol.

In the Galois array decoded, each row represents the attempt at decoding the corresponding row in code. A decoding failure occurs if bchdec detects more than t errors in a row of code, where t is the number of correctable errors as reported by bchgenpoly. In the case of a decoding failure, bchdec forms the corresponding row of decoded by merely removing $n-k$ symbols from the end of the row of code.
decoded $=$ bchdec (..., paritypos) specifies whether the parity symbols in code were appended or prepended to the message in the coding operation. The string paritypos can be either 'end' or 'beginning'. The default is 'end'. If paritypos is 'beginning', then a decoding failure causes bchdec to remove $n-k$ symbols from the beginning rather than the end of the row.
[decoded, cnumerr] = bchdec(...) returns a column vector cnumerr, each element of which is the number of corrected errors in the corresponding row of code. A value of -1 in cnumerr indicates a decoding failure in that row in code.
[decoded, cnumerr, ccode] = bchdec(...) returns ccode, the corrected version of code. The Galois array ccode has the same format as code. If a decoding failure occurs in a certain row of code, the corresponding row in ccode contains that row unchanged.

Results of Error Correction

BCH decoders correct up to a certain number of errors, specified by the user. If the input contains more errors than the decoder is meant to correct, the decoder will most likely not output the correct codeword.

The chance of a BCH decoder decoding a corrupted input to the correct codeword depends on the number of errors in the input and the number of errors the decoder is meant to correct.
For example, when a single-error-correcting BCH decoder is given input with two errors, it actually decodes it to a different codeword. When a double-error-correcting BCH decoder is given input with three errors, then it only sometimes decodes it to a valid codeword.

The following code illustrates this phenomenon for a single-error-correcting BCH decoder given input with two errors.

```
n = 63; k = 57;
msg = gf(randint(1, k, 2, 9973));
code = bchenc(msg, n, k);
% Add 2 errors
cnumerr2 = zeros(nchoosek(n,2),1);
nErrs = zeros(nchoosek(n,2),1);
cnumerrIdx = 1;
for idx1 = 1 : n-1
    sprintf('idx1 for 2 errors = %d', idx1)
    for idx2 = idx1+1 : n
        errors = zeros(1,n);
        errors(idx1) = 1;
        errors(idx2) = 1;
        erroredCode = code + gf(errors);
        [decoded2, cnumerr2(cnumerrIdx)]...
            = bchdec(erroredCode, n, k);
```

```
    % If bchdec thinks it corrected only one error,
    % then encode the decoded message. Check that
    % the re-encoded message differs from the errored
    % message in only one coordinate.
    if cnumerr2(cnumerrIdx) == 1
        code2 = bchenc(decoded2, n, k);
        nErrs(cnumerrIdx) = biterr(double(erroredCode.x),...
            double(code2.x));
        end
        cnumerrIdx = cnumerrIdx + 1;
        end
end
% Plot the computed number of errors, based on the difference
% between the double-errored codeword and the codeword that was
% re-encoded from the initial decoding.
plot(nErrs)
title('Number of Actual Errors between Errored Codeword and...
    Re-encoded Codeword')
```

The resulting plot shows that all inputs with two errors are decoded to a codeword that differs in exactly one position.

bchdec

Examples

The script below encodes a (random) message, simulates the addition of noise to the code, and then decodes the message.

```
m = 4; n = 2^m-1; % Codeword length
k = 5; % Message length
nwords = 10; % Number of words to encode
msg = gf(randint(nwords,k));
% Find t, the error-correction capability.
[genpoly,t] = bchgenpoly(n,k);
% Define t2, the number of errors to add in this example.
t2 = t;
% Encode the message.
code = bchenc(msg,n,k);
% Corrupt up to t2 bits in each codeword.
noisycode = code + randerr(nwords,n,1:t2);
```

```
% Decode the noisy code.
[newmsg,err,ccode] = bchdec(noisycode,n,k);
if ccode==code
    disp('All errors were corrected.')
end
if newmsg==msg
    disp('The message was recovered perfectly.')
end
```

In this case, all errors are corrected and the message is recovered perfectly. However, if you change the definition of t2 to

```
t2 = t+1;
```

then some codewords will contain more than t errors. This is too many errors, and some are not corrected.

Algorithm

Limitations

See Also
References
bchdec uses the Berlekamp-Massey decoding algorithm. For information about this algorithm, see the works listed in "References" on page 2-23.

The maximum allowable value of n is 65535 .
bchenc, bchgenpoly, "Block Coding"
[1] Wicker, Stephen B., Error Control Systems for Digital Communication and Storage, Upper Saddle River, NJ, Prentice Hall, 1995.
[2] Berlekamp, Elwyn R., Algebraic Coding Theory, New York, McGraw-Hill, 1968.

Purpose BCH encoder

Note bchenc will be removed in a future release. Use fec.bchenc instead.

```
Syntax code = bchenc(msg,n,k)
code = bchenc(...,paritypos)
Description
code \(=\) bchenc(msg, \(n, k\) ) encodes the message in msg using an \([\mathrm{n}, \mathrm{k}]\) BCH encoder with the narrow-sense generator polynomial. msg is a Galois array of symbols over GF(2). Each k-element row of msg represents a message word, where the leftmost symbol is the most significant symbol. Parity symbols are at the end of each word in the output Galois array code.
code \(=\) bchenc(..., paritypos) specifies whether bchenc appends or prepends the parity symbols to the input message to form code. The string paritypos can be either 'end' or 'beginning'. The default is 'end '.
```

The tables below list valid $[\mathrm{n}, \mathrm{k}]$ pairs for small values of n , as well as the corresponding values of the error-correction capability, t.

\mathbf{n}	\mathbf{k}	\mathbf{t}
7	4	1

\mathbf{n}	\mathbf{k}	\mathbf{t}
15	11	1
15	7	2
15	5	3

\mathbf{n}	\mathbf{k}	\mathbf{t}
31	26	1
31	21	2
31	16	3
31	11	5
31	6	7

\mathbf{n}	\mathbf{k}	\mathbf{t}
63	57	1
63	51	2
63	45	3
63	39	4
63	36	5
63	30	6
63	24	7
63	18	10
63	16	11
63	10	13
63	7	15

bchenc

\mathbf{n}	\mathbf{k}	\mathbf{t}
127	120	1
127	113	2
127	106	3
127	99	4
127	92	5
127	85	6
127	78	7
127	71	9
127	64	10
127	57	11
127	50	13
127	43	14
127	36	15
127	29	21
127	22	23
127	15	31

\mathbf{n}	\mathbf{k}	\mathbf{t}
255	247	1
255	239	2
255	231	3
255	223	4

n	k	t
255	215	5
255	207	6
255	199	7
255	191	8
255	187	9
255	179	10
255	171	11
255	163	12
255	155	13
255	147	14
255	139	15
255	131	18
255	123	19
255	115	21
255	107	22
255	99	23
255	91	25
255	87	26
255	79	27
255	71	29
255	63	30
255	55	31
255	47	42
255	45	43
255	37	45

bchenc

\mathbf{n}	\mathbf{k}	\mathbf{t}
255	29	47
255	21	55
255	13	59
255	9	63

\mathbf{n}	\mathbf{k}	\mathbf{t}
511	502	1
511	493	2
511	484	3
511	475	4
511	466	5
511	457	6
511	448	7
511	439	8
511	430	9
511	421	10
511	412	11
511	403	13
511	394	14
511	385	15
511	376	16
511	357	18

n	k	t
511	349	19
511	340	20
511	331	21
511	322	22
511	313	23
511	304	25
511	295	26
511	286	27
511	277	28
511	268	29
511	259	30
511	250	31
511	241	36
511	238	37
511	229	38
511	220	39
511	211	41
511	202	42
511	193	43
511	184	45
511	175	46
511	166	47
511	157	51
511	148	53
511	139	54

bchenc

\mathbf{n}	\mathbf{k}	\mathbf{t}
511	130	55
511	121	58
511	112	59
511	103	61
511	94	62
511	85	63
511	76	85
511	67	87
511	58	91
511	49	93
511	40	95
511	31	109
511	28	111
511	19	119
511	10	121

Examples

Limitations The maximum allowable value of n is 65535 .
See Also bchdec, bchgenpoly, bchnumerr, "Block Coding"

Purpose

Generator polynomial of BCH code
Syntax

Description

```
genpoly = bchgenpoly(n,k)
genpoly = bchgenpoly(n,k,prim_poly)
[genpoly,t] = bchgenpoly(...)
```

genpoly $=$ bchgenpoly (n, k) returns the narrow-sense generator polynomial of a BCH code with codeword length n and message length k. The codeword length n must have the form $2^{m}-1$ for some integer m. The output genpoly is a Galois row vector in $\mathrm{GF}(2)$ that represents the coefficients of the generator polynomial in order of descending powers. The narrow-sense generator polynomial is LCM[$m _1(x), m_{-} 2(x), \ldots$, $\left.\mathrm{m} _2 \mathrm{t}(\mathrm{x})\right]$, where LCM is the least common multiple, $\mathrm{m} _\mathrm{i}(\mathrm{x})$ is the minimum polynomial corresponding to α^{i}, α is a root of the default primitive polynomial for the field $\mathrm{GF}(\mathrm{n}+1)$, and t is the error-correcting capability of the code.

Note Although the bchgenpoly function performs intermediate computations in $\mathrm{GF}(\mathrm{n}+1)$, the final polynomial has binary coefficients. The output from bchgenpoly is a Galois vector in GF(2) rather than in $G F(n+1)$.
genpoly = bchgenpoly($\left.n, k, p r i m _p o l y\right)$ is the same as the syntax above, except that prim_poly specifies the primitive polynomial for $\mathrm{GF}(\mathrm{n}+1)$ that has A as a root. prim_poly is an integer whose binary representation indicates the coefficients of the primitive polynomial. To use the default primitive polynomial for $\mathrm{GF}(\mathrm{n}+1)$, set prim_poly to [].
[genpoly,t] = bchgenpoly(...) returns t, the error-correction capability of the code.

Examples

The results below show that a $[15,11]$ BCH code can correct one error and has a generator polynomial $\mathrm{X}^{4}+\mathrm{X}+1$.

$$
m=4 ;
$$

bchgenpoly

```
n = 2^m-1; % Codeword length
k = 11; % Message length
% Get generator polynomial and error-correction capability.
[genpoly,t] = bchgenpoly(n,k)
```

The output is

```
genpoly = GF(2) array.
Array elements =
    1 0
t =
```

 1

Limitations The maximum allowable value of n is 511 .

See Also bchenc, bchdec, bchnumerr, "Block Coding"

References [1] Peterson, W. Wesley, and E. J. Weldon, Jr., Error-Correcting Codes,

 2nd ed., Cambridge, MA, MIT Press, 1972.Purpose Number of correctable errors for BCH code

Syntax \quad| T $=\operatorname{bchnumer}(N)$ |
| :--- |
| $\quad T \quad=\operatorname{bchnumer}(N, K)$ |

Description $\quad \mathrm{T}=$ bchnumerr (N) returns all the possible combinations of message length, K, and number of correctable errors, t, for a BCH code of codeword length, N . N must have the form $2^{\mathrm{m}}-1$ for some integer, m , between 3 and 16. T is a matrix with three columns. The first column lists N , the second column lists K , and the third column lists t .
$\mathrm{T}=\mathrm{bchnumer}(\mathrm{N}, \mathrm{K})$ returns the number of correctable errors, t , for an (N, K) BCH code.

See Also
bchenc, bchdec, bchgenpoly

Purpose Bit error rate (BER) for uncoded AWGN channels

Syntax

Graphical

Interface

Description

```
ber = berawgn(EbNo,'pam',M)
ber = berawgn(EbNo,'qam',M)
ber = berawgn(EbNo,'psk',M,dataenc)
ber = berawgn(EbNo,'oqpsk',dataenc)
ber = berawgn(EbNo,'dpsk',M)
ber = berawgn(EbNo,'fsk',M, coherence)
ber = berawgn(EbNo,'fsk',2,coherence,rho)
ber = berawgn(EbNo,'msk',precoding)
ber = berawgn(EbNo,'msk',precoding,coherence)
berlb = berawgn(EbNo,'cpfsk',M,modindex,kmin)
[BER,SER] = berawgn(EbNo, ...)
```

As an alternative to the berawgn function, invoke the BERTool GUI (bertool), and use the Theoretical tab.

For All Syntaxes

The berawgn function returns the BER of various modulation schemes over an additive white Gaussian noise (AWGN) channel. The first input argument, EbNo, is the ratio of bit energy to noise power spectral density, in dB . If EbNo is a vector, the output ber is a vector of the same size, whose elements correspond to the different $\mathrm{E}_{\mathrm{b}} / \mathrm{N}_{0}$ levels. The supported modulation schemes, which correspond to the second input argument to the function, are in the following table.

Modulation Scheme	Second Input Argument
Phase shift keying (PSK)	'psk'
Offset quaternary phase shift keying (OQPSK)	'oqpsk'
Differential phase shift keying (DPSK)	'dpsk'

Modulation Scheme	Second Input Argument
Pulse amplitude modulation (PAM)	'pam'
Quadrature amplitude modulation (QAM)	'qam'
Frequency shift keying (FSK)	'fsk'
Minimum shift keying (MSK)	'msk'
Continuous phase frequency shift keying (CPFSK)	'cpfsk'

Most syntaxes also have an M input that specifies the alphabet size for the modulation. M must have the form 2^{k} for some positive integer k. For all cases, the function assumes the use of a Gray-coded signal constellation.

For Specific Syntaxes

ber $=$ berawgn(EbNo, 'pam', M$)$ returns the BER of uncoded PAM over an AWGN channel with coherent demodulation.
ber = berawgn(EbNo, 'qam' , M) returns the BER of uncoded QAM over an AWGN channel with coherent demodulation. The alphabet size, M,
must be at least 4 . When $k=\log _{2} M$ is odd, a rectangular constellation
of size $M=I \times J$ is used, where $I=2^{\frac{k-1}{2}}$ and $J=2^{\frac{k+1}{2}}$.
ber = berawgn(EbNo, 'psk', M, dataenc) returns the BER of coherently detected uncoded PSK over an AWGN channel. dataenc is either 'diff' for differential data encoding or 'nondiff' for nondifferential data encoding. If dataenc is 'diff', M must be no greater than 4.
ber $=$ berawgn(EbNo, 'oqpsk', dataenc $)$ returns the BER of coherently detected offset-QPSK over an uncoded AWGN channel.
ber $=$ berawgn(EbNo,'dpsk',M) returns the BER of uncoded DPSK modulation over an AWGN channel.
ber = berawgn(EbNo,'fsk', M, coherence) returns the BER of orthogonal uncoded FSK modulation over an AWGN channel. coherence is either 'coherent' for coherent demodulation or 'noncoherent' for noncoherent demodulation. M must be no greater than 64 for 'noncoherent'.
ber = berawgn(EbNo,'fsk',2,coherence, rho) returns the BER for binary nonorthogonal FSK over an uncoded AWGN channel, where rho is the complex correlation coefficient. See "Nonorthogonal 2-FSK with Coherent Detection" for the definition of the complex correlation coefficient and how to compute it for nonorthogonal BFSK.
ber = berawgn(EbNo, 'msk', precoding) returns the BER of coherently detected MSK modulation over an uncoded AWGN channel. Setting precoding to 'off' returns results for conventional MSK while setting precoding to 'on' returns results for precoded MSK.
ber = berawgn(EbNo,'msk',precoding, coherence) specifies whether the detection is coherent or noncoherent.
berlb = berawgn(EbNo,'cpfsk',M,modindex,kmin) returns a lower bound on the BER of uncoded CPFSK modulation over an AWGN channel. modindex is the modulation index, a positive real number. kmin is the number of paths having the minimum distance; if this number is unknown, you can assume a value of 1 .
[BER,SER] = berawgn(EbNo, ...) returns both the BER and SER.

Examples

Limitations

An example using this function is in "Comparing Theoretical and Empirical Error Rates".

The numerical accuracy of this function's output is limited by approximations related to the numerical implementation of the expressions.

You can generally rely on the first couple of significant digits of the function's output.

See Also \begin{tabular}{l}
bercoding, berfading, bersync, "Theoretical Performance Results",

Analytical Expressions Used in berawgn, bercoding, berfading, and

BERTool

 References

[1] Anderson, John B., Tor Aulin, and Carl-Erik Sundberg, Digital

Phase Modulation, New York, Plenum Press, 1986.

[2] Cho, K., and Yoon, D., "On the general BER expression of one- and

two-dimensional amplitude modulations", IEEE Trans. Commun., Vol.

50, Number 7, pp. 1074-1080, 2002.

[3] Lee, P. J., "Computation of the bit error rate of coherent M-ary PSK

with Gray code bit mapping", IEEE Trans. Commun., Vol. COM-34,

Number 5, pp. 488-491, 1986.

[4] Proakis, J. G., Digital Communications, 4th ed., McGraw-Hill, 2001.
\end{tabular}

bercoding

Purpose	Bit error rate (BER) for coded AWGN channels
Syntax	```berub = bercoding(EbNo,'conv',decision,coderate,dspec) berub = bercoding(EbNo,'block','hard',n,k,dmin) berub = bercoding(EbNo,'block','soft',n,k,dmin) berapprox = bercoding(EbNo,'Hamming','hard',n) berub = bercoding(EbNo,'Golay','hard',24) berapprox = bercoding(EbNo,'RS','hard',n,k)```
Graphical Interface	As an alternative to the bercoding function, invoke the BERTool GUI (bertool) and use the Theoretical tab.
Description	berub = bercoding(EbNo,'conv',decision, coderate,dspec) returns an upper bound or approximation on the BER of a binary convolutional code with coherent phase shift keying (PSK) modulation over an additive white Gaussian noise (AWGN) channel. EbNo is the ratio of bit energy to noise power spectral density, in dB. If EbNo is a vector, berub is a vector of the same size, whose elements correspond to the different $\mathrm{E}_{\mathrm{b}} / \mathrm{N}_{0}$ levels. To specify hard-decision decoding, set decision to 'hard'; to specify soft-decision decoding, set decision to 'soft'. The convolutional code has code rate equal to coderate. The dspec input is a structure that contains information about the code's distance spectrum: - dspec.dfree is the minimum free distance of the code. - dspec.weight is the weight spectrum of the code.
	To find distance spectra for some sample codes, use the distspec function or see [5] and [3].

Note The results for binary PSK and quaternary PSK modulation are the same. This function does not support M-ary PSK when M is other than 2 or 4 .
berub = bercoding(EbNo,'block','hard', $n, k, d m i n)$ returns an upper bound on the BER of an [n,k] binary block code with hard-decision decoding and coherent BPSK or QPSK modulation. dmin is the minimum distance of the code.
berub $=$ bercoding(EbNo,'block','soft', $n, k, d m i n)$ returns an upper bound on the BER of an [n,k] binary block code with soft-decision decoding and coherent BPSK or QPSK modulation. dmin is the minimum distance of the code.
berapprox = bercoding(EbNo, 'Hamming', 'hard', n) returns an approximation of the BER of a Hamming code using hard-decision decoding and coherent BPSK modulation. (For a Hamming code, if n is known, then k can be computed directly from n .)
berub = bercoding(EbNo,'Golay','hard',24) returns an upper bound of the BER of a Golay code using hard-decision decoding and coherent BPSK modulation. Support for Golay currently is only for $\mathrm{n}=24$. In accordance with [3], the Golay coding upper bound assumes only the correction of 3 -error patterns. Even though it is theoretically possible to correct approximately 19% of 4 -error patterns, most decoders in practice do not have this capability.
berapprox = bercoding(EbNo, 'RS','hard', n, k) returns an approximation of the BER of (n, k) Reed-Solomon code using hard-decision decoding and coherent BPSK modulation.

Examples An example using this function for a convolutional code is in "Plotting

 Theoretical Error Rates".The following example finds an upper bound on the theoretical BER of a block code. It also uses the berfit function to perform curve fitting.

```
n = 23; k = 12; % Lengths of codewords and messages
dmin = 7; % Minimum distance
EbNo = 1:10;
ber_block = bercoding(EbNo,'block','hard',n,k,dmin);
berfit(EbNo,ber_block) % Plot BER points and fitted curve.
ylabel('Bit Error Probability');
```


bercoding

title('BER Upper Bound vs. Eb/No, with Best Curve Fit');

Limitations

See Also

The numerical accuracy of this function's output is limited by

- Approximations in the analysis leading to the closed-form expressions that the function uses
- Approximations related to the numerical implementation of the expressions

You can generally rely on the first couple of significant digits of the function's output.
berawgn, berfading, bersync, distspec, "Theoretical Performance Results" Analytical Expressions Used in berawgn, bercoding, berfading, and BERTool

References

[1] Proakis, J. G., Digital Communications, 4th ed., New York, McGraw-Hill, 2001.
[2] Frenger, P., P. Orten, and T. Ottosson, "Convolutional Codes with Optimum Distance Spectrum," IEEE Communications Letters, Vol. 3, No. 11, Nov. 1999, pp. 317-319.
[3] Odenwalder, J. P., Error Control Coding Handbook, Final Report, LINKABIT Corporation, San Diego, CA, 1976.
[4] Sklar, B., Digital Communications, 2nd ed., Prentice Hall, 2001.
[5] Ziemer, R. E., and R. L., Peterson, Introduction to Digital Communication, 2nd ed., Prentice Hall, 2001.

Purpose
Bit error rate (BER) and confidence interval of Monte Carlo simulation

Syntax

[ber,interval] = berconfint(nerrs,ntrials)
[ber,interval] = berconfint(nerrs,ntrials,level)
[ber, interval] = berconfint(nerrs, ntrials) returns the error probability estimate ber and the 95% confidence interval interval for a Monte Carlo simulation of ntrials trials with nerrs errors. interval is a two-element vector that lists the endpoints of the interval. If the errors and trials are measured in bits, the error probability is the bit error rate (BER); if the errors and trials are measured in symbols, the error probability is the symbol error rate (SER).
[ber, interval] = berconfint(nerrs,ntrials,level) specifies the confidence level as a real number between 0 and 1 .

If a simulation of a communication system results in 100 bit errors in 10^{6} trials, the BER (bit error rate) for that simulation is the quotient 10^{-4}. The command below finds the 95% confidence interval for the BER of the system.

```
nerrs = 100; % Number of bit errors in simulation
ntrials = 10^6; % Number of trials in simulation
level = 0.95; % Confidence level
[ber,interval] = berconfint(nerrs,ntrials,level)
```

The output below shows that, with 95% confidence, the BER for the system is between 0.0000814 and 0.0001216 .

```
ber =
    1.0000e-004
interval =
    1.0e-003 *
        0.0814 0.1216
```

For an example that uses the output of berconfint to plot error bars on a BER plot, see "Example: Curve Fitting for an Error Rate Plot"

See Also binofit (Statistics Toolbox), mle (Statistics Toolbox), "Performance Evaluation"

References

[1] Jeruchim, Michel C., Philip Balaban, and K. Sam Shanmugan, Simulation of Communication Systems, Second Edition, New York, Kluwer Academic/Plenum, 2000.

Purpose
Bit error rate (BER) for Rayleigh and Rician fading channels
Syntax

```
ber = berfading(EbNo,'pam',M,divorder)
ber = berfading(EbNo,'qam',M,divorder)
ber = berfading(EbNo,'psk',M,divorder)
ber = berfading(EbNo,'depsk',M,divorder)
ber = berfading(EbNo,'oqpsk',divorder)
ber = berfading(EbNo,'dpsk',M,divorder)
ber = berfading(EbNo,'fsk',M,divorder,coherence)
ber = berfading(EbNo,'fsk',2,divorder,coherence,rho)
ber = berfading(EbNo,...,K)
ber = berfading(EbNo,'psk',2,1,K,phaserr)
[BER,SER] = berfading(EbNo, ...)
```

As an alternative to the berfading function, invoke the BERTool GUI (bertool), and use the Theoretical tab.

Description

For All Syntaxes

The first input argument, EbNo, is the ratio of bit energy to noise power spectral density, in dB . If EbNo is a vector, the output ber is a vector of the same size, whose elements correspond to the different $\mathrm{E}_{\mathrm{b}} / \mathrm{N}_{0}$ levels.
Most syntaxes also have an M input that specifies the alphabet size for the modulation. M must have the form 2^{k} for some positive integer k .
berfading uses expressions that assume Gray coding. If you use binary coding, the results may differ.

For cases where diversity is used, the SNR on each diversity branch is EbNo/divorder, where divorder is the diversity order (the number of diversity branches) and is a positive integer.

For Specific Syntaxes

ber = berfading(EbNo, 'pam', M, divorder) returns the BER for PAM over an uncoded Rayleigh fading channel with coherent demodulation.
ber = berfading(EbNo, 'qam', M, divorder) returns the BER for QAM over an uncoded Rayleigh fading channel with coherent demodulation.

berfading

The alphabet size, M, must be at least 4 . When $k=\log _{2} M$ is odd, a rectangular constellation of size $M=I \times J$ is used, where $I=2^{\frac{k-1}{2}}$ and $J=2^{\frac{k+1}{2}}$.
ber $=$ berfading(EbNo,'psk', M, divorder) returns the BER for coherently detected PSK over an uncoded Rayleigh fading channel.
ber = berfading(EbNo,'depsk',M,divorder) returns the BER for coherently detected PSK with differential data encoding over an uncoded Rayleigh fading channel. Only $M=2$ is currently supported.
ber $=$ berfading(EbNo, 'oqpsk', divorder) returns the BER of coherently detected offset-QPSK over an uncoded Rayleigh fading channel.
ber = berfading(EbNo,'dpsk', M, divorder) returns the BER for DPSK over an uncoded Rayleigh fading channel. For DPSK, it is assumed that the fading is slow enough that two consecutive symbols are affected by the same fading coefficient.
ber = berfading(EbNo,'fsk',M,divorder, coherence) returns the BER for orthogonal FSK over an uncoded Rayleigh fading channel. coherence should be 'coherent' for coherent detection, or 'noncoherent' for noncoherent detection.
ber = berfading(EbNo,'fsk',2,divorder, coherence, rho) returns the BER for binary nonorthogonal FSK over an uncoded Rayleigh fading channel. rho is the complex correlation coefficient. See "Nonorthogonal 2-FSK with Coherent Detection" for the definition of the complex correlation coefficient and how to compute it for nonorthogonal BFSK.
ber = berfading(EbNo,...,K) returns the BER over an uncoded Rician fading channel, where K is the ratio of specular to diffuse energy in linear scale. For the case of 'fsk', rho must be specified before K.
ber $=$ berfading(EbNo, 'psk',2,1,K, phaserr) returns the BER of BPSK over an uncoded Rician fading channel with imperfect phase

berfading

synchronization. phaserr is the standard deviation of the reference carrier phase error in radians.
[BER,SER] = berfading(EbNo, ...) returns both the BER and SER.

Examples

The following example computes and plots the BER for uncoded DQPSK (differential quaternary phase shift keying) modulation over an flat Rayleigh fading channel.

```
EbNo = 0:5:35;
M = 4; % Use DQPSK, so M = 4.
divorder = 1;
ber = berfading(EbNo,'dpsk',M,divorder);
semilogy(EbNo,ber,'b.-');
```


berfading

Limitations

See Also

References

The numerical accuracy of this function's output is limited by approximations related to the numerical implementation of the expressions

You can generally rely on the first couple of significant digits of the function's output.
berawgn, bercoding, bersync, "Theoretical Performance Results" Analytical Expressions Used in berawgn, bercoding, berfading, and BERTool
[1] Proakis, John G., Digital Communications, 4th ed., New York, McGraw-Hill, 2001.
[2] Modestino, James W., and Mui, Shou Y., Convolutional code performance in the Rician fading channel, IEEE Trans. Commun., 1976.
[3] Cho, K., and Yoon, D., "On the general BER expression of one- and two-dimensional amplitude modulations", IEEE Trans. Commun., Vol. 50, Number 7, pp. 1074-1080, 2002.
[4] Lee, P. J., "Computation of the bit error rate of coherent M-ary PSK with Gray code bit mapping", IEEE Trans. Commun., Vol. COM-34, Number 5, pp. 488-491, 1986.
[5] Lindsey, W. C., "Error probabilities for Rician fading multichannel reception of binary and N-ary signals", IEEE Trans. Inform. Theory, Vol. IT-10, pp. 339-350, 1964.
[6] Simon, M. K , Hinedi, S. M., and Lindsey, W. C., Digital Communication Techniques - Signal Design and Detection, Prentice-Hall, 1995.
[7] Simon, M. K., and Alouini, M. S., Digital Communication over Fading Channels - A Unified Approach to Performance Analysis, 1st ed., Wiley, 2000.

berfading

[8] Simon, M. K , "On the bit-error probability of differentially encoded QPSK and offset QPSK in the presence of carrier synchronization", IEEE Trans. Commun., Vol. 54, pp. 806-812, 2006.

Purpose

Fit curve to nonsmooth empirical bit error rate (BER) data

Syntax
\section*{Description}

fitber = berfit(empEbNo,empber)
fitber $=$ berfit(empEbNo,empber,fitEbNo)
fitber = berfit(empEbNo,empber,fitEbNo,options)
fitber = berfit(empEbNo,empber,fitEbNo,options,fittype)
[fitber,fitprops] = berfit(...)
berfit(...)
berfit(empEbNo,empber,fitEbNo,options,'all')
fitber = berfit(empEbNo, empber) fits a curve to the empirical BER data in the vector empber and returns a vector of fitted bit error rate (BER) points. The values in empber and fitber correspond to the $\mathrm{E}_{\mathrm{b}} / \mathrm{N}_{0}$ values, in dB , given by empEbNo. The vector empEbNo must be in ascending order and must have at least four elements.

Note The berfit function is intended for curve fitting or interpolation, not extrapolation. Extrapolating BER data beyond an order of magnitude below the smallest empirical BER value is inherently unreliable.
fitber = berfit(empEbNo,empber,fitEbNo) fits a curve to the empirical BER data in the vector empber corresponding to the $\mathrm{E}_{\mathrm{b}} / \mathrm{N}_{0}$ values, in dB , given by empEbNo. The function then evaluates the curve at the $\mathrm{E}_{\mathrm{b}} / \mathrm{N}_{0}$ values, in dB , given by fitEbNo and returns the fitted BER points. The length of fitEbNo must equal or exceed that of empEbNo.
fitber = berfit(empEbNo,empber,fitEbNo,options) uses the structure options to override the default options used for optimization. These options are the ones used by the fminsearch function. You can create the options structure using the optimset function. Particularly relevant fields are described in the table below.

berfit

Field	Description
options.Display	Level of display: 'off' (default) displays no output; 'iter' displays output at each iteration; 'final' displays only the final output; 'notify' displays output only if the function does not lonverge.
options.MaxFunEvals	Maximum number of function evaluations before optimization ceases. The default is 10^{4}.
options.MaxIter	Maximum number of iterations before optimization ceases. The default is 104.
options. TolFun	Termination tolerance on the closed-form function used to generate the fit. The default is 10^{-4}.
options. TolX	Termination tolerance on the coefficient values of the closed-form function used to generate the fit. The default is 10^{-4}.

fitber = berfit(empEbNo,empber,fitEbNo,options,fittype) specifies which closed-form function berfit uses to fit the empirical data, from the possible fits listed in "Algorithm" on page 2-52 below. fittype can be 'exp', 'exp+const', 'polyRatio', or 'doubleExp+const'. To avoid overriding default optimization options, use options = [].
[fitber,fitprops] = berfit(...) returns the MATLAB structure fitprops, which describes the results of the curve fit. Its fields are described in the table below.

Field	Description
fitprops.fitType	The closed-form function type used to generate the fit: 'exp', 'exp+const', 'polyRatio', or 'doubleExp+const'.
fitprops.coeffs	The coefficients used to generate the fit. If the function cannot find a valid fit, fitprops.coeffs is an empty vector.
fitprops.sumSqErr	The sum squared error between the log of the fitted BER points and the log of the empirical BER points.
fitprops.exitState	The exit condition of berfit: 'The curve fit converged to a solution. ', 'The maximum number of function evaluations was exceeded. ', or 'No desirable fit was found'.
fitprops.funcCount	The number of function evaluations used in minimizing the sum squared error function.
fitprops.iterations	The number of iterations taken in minimizing the sum squared error function. This is not necessarily equal to the number of function evaluations.

berfit(...) plots the empirical and fitted BER data.
berfit(empEbNo,empber,fitEbNo,options, 'all') plots the empirical and fitted BER data from all the possible fits, listed in the "Algorithm"

berfit

on page 2-52 below, that return a valid fit. To avoid overriding default options, use options = [].

Note A valid fit must be

- real-valued
- monotonically decreasing
- greater than or equal to 0 and less than or equal to 0.5

If a fit does not confirm to this criteria, it is rejected.

Algorithm

The berfit function fits the BER data using unconstrained nonlinear optimization via the fminsearch function. The closed-form functions that berfit considers are listed in the table below, where x is the $\mathrm{E}_{\mathrm{b}} / \mathrm{N}_{0}$ in linear terms (not dB) and f is the estimated BER. These functions were empirically found to provide close fits in a wide variety of situations, including exponentially decaying BERs, linearly varying BERs, and BER curves with error rate floors.

Value of fittype	Functional Expression
'exp'	$f(x)=\frac{a_{1} \exp \left\{-\left[\left(x-a_{2}\right)^{a_{3}}\right]\right\}}{a}$
'exp+const'	$f(x)=\frac{a_{1} \exp \left[-\left(x-a_{2}\right)^{a_{3}}\right]}{a_{4}}+a_{5}$

Value of fittype	Functional Expression
'polyRatio'	$f(x)=\frac{a_{1} x^{2}+a_{2} x+a_{3}}{x^{3}+a_{4} x^{2}+a_{5} x+a_{6}}$
'doubleExp+const'	$\frac{a_{1} \exp \left[-\left(x-a_{2}\right)^{a_{3}}\right]}{a_{4}}$
	$+\frac{a_{5} \exp \left[-\left(x-a_{6}\right)^{a_{7}}\right]}{a_{8}}+a_{9}$

The sum squared error function that fminsearch attempts to minimize is

$$
F=\sum[\log (\text { empirical BER })-\log (\text { fitted BER })]^{2}
$$

where the fitted BER points are the values in fitber and the sum is over the $\mathrm{E}_{\mathrm{b}} / \mathrm{N}_{0}$ points given in empEbNo. It is important to use the log of the BER values rather than the BER values themselves so that the high-BER regions do not dominate the objective function inappropriately.

Examples

The examples below illustrate the syntax of the function, but they use hard-coded or theoretical BER data for simplicity. For an example that uses empirical BER data from a simulation, see "Example: Curve Fitting for an Error Rate Plot".
The code below plots the best fit for a sample set of data.

```
EbNo = 0:13;
berdata = [.2 . 15 .13 . 12 . 08 . 09 . 08 . 07 .06 .04 .03 . 02 .01 .004];
berfit(EbNo,berdata); % Plot the best fit.
```


The curve connects the points created by evaluating the fit expression at the values in EbNo. To make the curve look smoother, use a syntax like berfit(EbNo, berdata, $0: 0.2: 13]$). This alternative syntax uses more points when plotting the curve, but it does not change the fit expression.

The next example demonstrates a fit for a BER curve with an error floor. We generate the empirical BER array by simulating a channel with a null (ch = [0.5 0.47]) with BPSK modulation and linear MMSE equalizer at the receiver. We run the berfit with the 'all' option. The 'doubleExp+const' fit does not provide a valid fit, and the 'exp' fit type does not work well for this data. The 'exp+const' and 'polyRatio' fits closely match the simulated data.

```
EbNo = -10:3:15;
empBER = [l0.3361 0.3076 0.2470 0.1878 0.1212 0.0845 0.0650 0.0540 0.0474];
figure; berfit(EbNo, empBER, [], [], 'all');
```


The following code illustrates the use of the options input structure as well as the fitprops output structure. The 'notify' value for the display level causes the function to produce output when one of the attempted fits does not converge. The exitState field of the output structure also indicates which fit converges and which fit does not.

```
M = 4; EbNo = 3:10;
berdata = berfading(EbNo,'psk',M,2); % Compute theoretical BER.
noisydata = berdata.*[. . 93 . 92 1 . 59 . 08 . 15 .01 .01];
% Say when fit fails to converge.
options = optimset('display','notify');
disp('*** Trying exponential fit.') % Poor fit
[fitber1,fitprops1] = berfit(EbNo,noisydata,EbNo,...
    options,'exp')
```


berfit

```
disp('*** Trying polynomial ratio fit.') % Good fit
[fitber2,fitprops2] = berfit(EbNo,noisydata,EbNo,...
    options,'polyRatio')
```

The output is as follows:

```
*** Trying exponential fit.
```

Exiting: Maximum number of function evaluations has been exceeded
- increase MaxFunEvals option.
Current function value: 2.729948
fitber1 =
$\begin{array}{lllllll}0.0766 & 0.0423 & 0.0205 & 0.0086 & 0.0030 & 0.0009 & 0.0002\end{array}$
fitprops1 =
fitType: 'exp'
coeffs: [4x1 double]
sumSqErr: 2.7299
exitState: 'The maximum number of function evaluations has been e
funcCount: 10000
iterations: 6177
*** Trying polynomial ratio fit.
fitber2 =
$\begin{array}{lllllll}0.0931 & 0.0476 & 0.0220 & 0.0090 & 0.0031 & 0.0008 & 0.0001\end{array}$
fitprops2 =
fitType: 'polyRatio'

```
            coeffs: [6x1 double]
        sumSqErr: 2.0578
exitState: 'The curve fit converged to a solution'
funcCount: 580
iterations: 344
```

See Also fminsearch, optimset, "Performance Evaluation"
References For a general description of unconstrained nonlinear optimization, see the following work.
[1] Chapra, Steven C., and Raymond P. Canale, Numerical Methods for Engineers, Fourth Edition, New York, McGraw-Hill, 2002.

Purpose
 Bit error rate (BER) for imperfect synchronization

Syntax

Graphical Interface

Description

Examples

ber = bersync(EbNo,timerr,'timing')
ber $=$ bersync(EbNo, phaserr,'carrier')

As an alternative to the bersync function, invoke the BERTool GUI (bertool) and use the Theoretical tab.
ber $=$ bersync(EbNo,timerr,'timing') returns the BER of uncoded coherent binary phase shift keying (BPSK) modulation over an additive white Gaussian noise (AWGN) channel with imperfect timing. The normalized timing error is assumed to have a Gaussian distribution. EbNo is the ratio of bit energy to noise power spectral density, in $d B$. If EbNo is a vector, the output ber is a vector of the same size, whose elements correspond to the different $\mathrm{E}_{\mathrm{b}} / \mathrm{N}_{0}$ levels. timerr is the standard deviation of the timing error, normalized to the symbol interval. timerr must be between 0 and 0.5 .
ber $=$ bersync(EbNo, phaserr,'carrier') returns the BER of uncoded BPSK modulation over an AWGN channel with a noisy phase reference. The phase error is assumed to have a Gaussian distribution. phaserr is the standard deviation of the error in the reference carrier phase, in radians.

The code below computes the BER of coherent BPSK modulation over an AWGN channel with imperfect timing. The example varies both EbNo and timerr. (When timerr assumes the final value of zero, the bersync command produces the same result as berawgn(EbNo, 'psk',2).)

```
EbNo = [4 8 12];
timerr = [0.2 0.07 0];
ber = zeros(length(timerr), length(EbNo));
for ii = 1:length(timerr)
    ber(ii,:) = bersync(EbNo, timerr(ii),'timerr');
end
% Display result using scientific notation.
format short e; ber
```

```
format; % Switch back to default notation format.
```

The output is below, where each row corresponds to a different value of timerr and each column corresponds to a different value of EbNo.

```
ber =
    5.2073e-002 2.0536e-002 1.1160e-002
    1.8948e-002 7.9757e-004 4.9008e-006
    1.2501e-002 1.9091e-004 9.0060e-009
```


Limitations

The numerical accuracy of this function's output is limited by

- Approximations in the analysis leading to the closed-form expressions that the function uses
- Approximations related to the numerical implementation of the expressions

You can generally rely on the first couple of significant digits of the function's output.

Limitations Related to Extreme Values of Input Arguments

Inherent limitations in numerical precision force the function to assume perfect synchronization if the value of timerr or phaserr is very small. The table below indicates how the function behaves under these conditions.

Condition	Behavior of Function
timerr < eps	bersync(EbNo, timerr, 'timing') defined as berawgn(EbNo, 'psk', 2)
phaserr < eps	bersync(EbNo, phaserr, 'carrier') defined as berawgn(EbNo, 'psk' 2$)$

Algorithm

This function uses formulas from [3].
When the last input is 'timing ', the function computes

$$
\frac{1}{4 \pi \sigma} \int_{-\infty}^{\infty} \exp \left(-\frac{\xi^{2}}{2 \sigma^{2}}\right) \int_{\sqrt{2 R}(1-2|\xi|)}^{\infty} \exp \left(-\frac{x^{2}}{2}\right) d x d \xi+\frac{1}{2 \sqrt{2 \pi}} \int_{\sqrt{2 R}}^{\infty} \exp \left(-\frac{x^{2}}{2}\right) d x
$$

where σ is the timerr input and R is the value of EbNo converted from dB to a linear scale.

When the last input is 'carrier', the function computes

$$
\frac{1}{\pi \sigma} \int_{0}^{\infty} \exp \left(-\frac{\phi^{2}}{2 \sigma^{2}}\right) \int_{\sqrt{2 R} \cos \phi}^{\infty} \exp \left(-\frac{y^{2}}{2}\right) d y d \phi
$$

where σ is the phaserr input and R is the value of EbNo converted from $d B$ to a linear scale.

See Also
berawgn, bercoding, berfading, "Theoretical Performance Results"

References

[1] Jeruchim, Michel C., Philip Balaban, and K. Sam Shanmugan, Simulation of Communication Systems, Second Edition, New York, Kluwer Academic/Plenum, 2000.
[2] Sklar, Bernard, Digital Communications: Fundamentals and Applications, Second Edition, Upper Saddle River, NJ, Prentice-Hall, 2001.
[3] Stiffler, J. J., Theory of Synchronous Communications, Englewood Cliffs, NJ, Prentice-Hall, 1971.

Purpose
Open bit error rate analysis GUI (BERTool)

Syntax
 bertool

Description bertool launches the Bit Error Rate Analysis Tool (BERTool). BERTool is a graphical user interface (GUI) that enables you to analyze communications links' BER performance via simulation-based, semianalytic, or theoretical approach. To learn about BERTool, see "BERTool: A Bit Error Rate Analysis GUI".

Purpose Convert binary vectors to decimal numbers

Syntax
d = bi2de(b)
d = bi2de(b,flg)
d = bi2de(b,p)
d $=$ bi2de(b, p,flg)

Description

$d=\operatorname{bi2de}(b)$ converts a binary row vector b to a nonnegative decimal integer. If b is a matrix, each row is interpreted separately as a binary number. In this case, the output d is a column vector, each element of which is the decimal representation of the corresponding row of b.

Note By default, bi2de interprets the first column of b as the lowest-order digit.
$\mathrm{d}=\mathrm{bi2de}(\mathrm{~b}, f l g)$ is the same as the syntax above, except that $f l g$ is a string that determines whether the first column of b contains the lowest-order or highest-order digits. Possible values for $f l g$ are 'right-msb' and 'left-msb'. The value 'right-msb' produces the default behavior.
$d=b i 2 d e(b, p)$ converts a base-p row vector b to a nonnegative decimal integer, where p is an integer greater than or equal to 2 . The first column of b is the lowest base-p digit. If b is a matrix, the output d is a nonnegative decimal vector, each row of which is the decimal form of the corresponding row of b.
$d=b i 2 d e(b, p, f l g)$ is the same as the syntax above, except that $f l g$ is a string that determines whether the first column of b contains the lowest-order or highest-order digits. Possible values for $f l g$ are 'right-msb' and 'left-msb'. The value 'right-msb' produces the default behavior.

```
Examples
The code below generates a matrix that contains binary representations of five random numbers between 0 and 15 . It then converts all five numbers to decimal integers.
```

```
b = randint(5,4); % Generate a 5-by-4 random binary matrix.
```

b = randint(5,4); % Generate a 5-by-4 random binary matrix.
de = bi2de(b);
de = bi2de(b);
disp(' Dec Binary')
disp(' Dec Binary')
disp(' ----- -----------------')
disp(' ----- -----------------')
disp([de, b])

```
disp([de, b])
```

Sample output is below. Your results might vary because the numbers are random.

Dec		Binary		
13	1	0	1	1
7	1	1	1	0
15	1	1	1	1
4	0	0	1	0
9	1	0	0	1

The command below converts a base-five number into its decimal counterpart, using the leftmost base-five digit (4 in this case) as the most significant digit. The example reflects the fact that $4\left(5^{3}\right)+2\left(5^{2}\right)+5^{0}=551$.

$$
d=\text { bi2de([4 } 2001], 5,{ }^{\prime} \text { left-msb') }
$$

The output is

$$
d=
$$

551

See Also
 de2bi

bin2gray

Purpose Convert positive integers into corresponding Gray-encoded integers
Syntax $\quad \begin{aligned} & y=\operatorname{bin2gray}(x, \text { modulation }, M) \\ & {[y, \text { map }]=\operatorname{bin2gray}(x, \text { modulation }, M)}\end{aligned}$
Description
$y=$ bin2gray (x, modulation, M) generates a Gray-encoded vector or matrix output y with the same dimensions as its input parameter x. x can be a scalar, vector, or matrix. modulation is the modulation type and must be a string equal to 'qam', 'pam', 'fsk', 'dpsk', or 'psk'. M is the modulation order that can be an integer power of 2 .
[y,map] = bin2gray(x,modulation, M) generates a Gray-encoded output y with its respective Gray-encoded constellation map, map.
You can use map output to label a Gray-encoded constellation. The map output gives the Gray encoded labels for the corresponding modulation. See the example below.

Note If you are converting binary coded data to Gray-coded data and modulating the result immediately afterwards, you should use the appropriate modulation object or function with the 'Gray ' option, instead of BIN2GRAY.

Example

```
% To Gray encode a vector x with a 16-QAM Gray encoded
% constellation and return its map, use:
x=randint(1,100,16);
[y,map] = bin2gray(x,'qam',16);
% Obtain the symbols for 16-QAM
hMod = modem.qammod('M', 16);
symbols = hMod.Constellation;
% Plot the constellation
scatterplot(symbols);
set(get(gca,'Children'),'Marker','d','MarkerFaceColor',
'auto'); hold on;
% Label the constellation points according
```


bin2gray

```
% to the Gray mapping
for jj=1:16
text(real(symbols(jj))-0.15,imag(symbols(jj))+0.15,...
dec2base(map(jj),2,4));
end
set(gca,'yTick',(-4:2:4),'xTick',(-4:2:4),...
'XLim',[-4 4],'YLim',...
[-4 4],'Box','on','YGrid','on', 'XGrid','on');
```

The example code generates the following plot, which shows the 16 QAM constellation with Gray-encoded labeling.

See Also

gray2bin

biterr

Purpose Compute number of bit errors and bit error rate (BER)

```
Syntax
[number,ratio] = biterr(x,y)
[number,ratio] = biterr(x,y,k)
[number, ratio] = biterr(x,y,k,flg)
[number, ratio,individual] = biterr(...)
```


Description

For All Syntaxes

The biterr function compares unsigned binary representations of elements in x with those in y. The schematics below illustrate how the shapes of x and y determine which elements biterr compares.

Each element of x and y must be a nonnegative decimal integer; biterr converts each element into its natural unsigned binary representation. number is a scalar or vector that indicates the number of bits that differ. ratio is number divided by the total number of bits. The total number of bits, the size of number, and the elements that biterr compares are determined by the dimensions of x and y and by the optional parameters.

For Specific Syntaxes

[number, ratio] $=$ biterr (x, y) compares the elements in x and y. If the largest among all elements of x and y has exactly k bits in its simplest binary representation, the total number of bits is k times the number of entries in the smaller input. The sizes of x and y determine which elements are compared:

- If x and y are matrices of the same dimensions, then biterr compares x and y element by element. number is a scalar. See schematic (a) in the preceding figure.
- If one is a row (respectively, column) vector and the other is a two-dimensional matrix, then biterr compares the vector element by element with each row (resp., column) of the matrix. The length of the vector must equal the number of columns (resp., rows) in the matrix. number is a column (resp., row) vector whose mth entry indicates the number of bits that differ when comparing the vector with the mth row (resp., column) of the matrix. See schematics (b) and (c) in the figure.
[number, ratio] $=$ biter (x, y, k) is the same as the first syntax, except that it considers each entry in x and y to have k bits. The total number of bits is k times the number of entries of the smaller of x and y. An error occurs if the binary representation of an element of x or y would require more than k digits.
[number, ratio] = biterr $(x, y, k, f l g)$ is similar to the previous syntaxes, except that $f l g$ can override the defaults that govern which elements biterr compares and how biterr computes the outputs. The possible values of $f l g$ are 'row-wise', 'column-wise', and 'overall'. The table below describes the differences that result from various combinations of inputs. As always, ratio is number divided by the total number of bits. If you do not provide k as an input argument, the function defines it internally as the number of bits in the simplest binary representation of the largest among all elements of x and y.

biterr

Comparing a Two-Dimensional Matrix x with Another Input y

Shape of y	flg	Type of Comparison	number	Total Number of Bits
2-D matrix	'overall' (default)	Element by element	Total number of bit errors	k times number of entries of y
	'row-wise'	mth row of x vs. mth row of y	Column vector whose entries count bit errors in each row	k times number of entries of y
	'column-wise'	mth column of x vs. mth column of y	Row vector whose entries count bit errors in each column	k times number of entries of y

Comparing a Two-Dimensional Matrix x with Another Input y (Continued)

Shape of y	flg	Type of Comparison	number	Total Number of Bits
Row vector	'overall'	y vs. each row of x	Total number of bit errors	k times number of entries of x
	'row-wise' (default)	y vs. each row of x	Column vector whose entries count bit errors in each row of x	k times size of y
Column vector	'overall'	y vs. each column of x	Total number of bit errors	k times number of entries of x
	'column-wise '	y vs. each column of x (default)	Row vector whose entries count bit errors in each column of x	k times size of y

[number, ratio,individual] = biterr(...) returns a matrix individual whose dimensions are those of the larger of x and y. Each

biterr

entry of individual corresponds to a comparison between a pair of elements of x and y, and specifies the number of bits by which the elements in the pair differ.

Examples

Example 1

The commands below compare the column vector $[0 ; 0 ; 0]$ to each column of a random binary matrix. The output is the number, proportion, and locations of 1 s in the matrix. In this case, individual is the same as the random matrix.

```
format rat;
[number,ratio,individual] = biterr([0;0;0],randint(3,5))
```

The output is

number $=$				
2	0	0	3	1
ratio $=$				
$2 / 3$	0	0	1	$1 / 3$
individual $=$		0	1	0
1	0	0	1	0
1	0	0	1	1

Example 2

The commands below illustrate the use of $f l g$ to override the default row-by-row comparison. number and ratio are scalars, and individual has the same dimensions as the larger of the first two arguments of biterr.

```
format rat;
[number2,ratio2,individual2] = biterr([1 2; 3 4],[1 3],3,'overall')
```

The output is

```
number =
    5
ratio =
    5/12
individual =
```

 \(0 \quad 1\)
 13

Example 3

The script below adds errors to 10% of the elements in a matrix. Each entry in the matrix is a two-bit number in decimal form. The script computes the bit error rate using biterr and the symbol error rate using symerr.

```
x = randint(100,100,4); % Original signal
% Create errors to add to ten percent of the elements of x.
% Errors can be either 1, 2, or 3 (not zero).
errorplace = (rand(100,100) > .9); % Where to put errors
errorvalue = randint(100,100,[1,3]); % Value of the errors
errors = errorplace.*errorvalue;
y = rem(x+errors,4); % Signal with errors added, mod 4
format short
[num_bit,ratio_bit] = biterr(x,y,2)
[num_sym,ratio_sym] = symerr(x,y)
```


biterr

Sample output is below. ratio_sym is close to the target value of 0.10. Your results might vary because the example uses random numbers.

```
num_bit =
            1 3 0 4
ratio_bit =
            0.0652
num_sym =
        981
    ratio_sym =
        0.0981
```

symerr, "Performance Results via Simulation"

Purpose Model binary symmetric channel

```
Syntax ndata = bsc(data,p)
ndata = bsc(data,p,state)
[ndata,err] = bsc(...)
```


Description

ndata $=\mathrm{bsc}($ data, p$)$ passes the binary input signal data through a binary symmetric channel with error probability p. The channel introduces a bit error with probability p, processing each element of data independently. data must be an array of binary numbers or a Galois array in GF(2). p must be a scalar between 0 and 1 .
ndata $=\mathrm{bsc}($ data, p, state $)$ resets the state of the uniform random number generator rand to the integer state.
[ndata,err] = bsc(...) returns an array, err, containing the channel errors.

This function uses, by default, the Mersenne Twister algorithm by Nishimura and Matsumoto.

Note Using the state parameter causes this function to switch random generators to use the 'state' algorithm of the rand function.

See rand for details on the generator algorithm.

Examples

To introduce bit errors in the bits in a random matrix with probability 0.15 , use the bsc function:

```
z = randint(100,100); % Random matrix
nz = bsc(z,.15); % Binary symmetric channel
[numerrs, pcterrs] = biterr(z,nz) % Number and percentage of errors
```

The output below is typical. The percentage of bit errors is not exactly 15% in most trials, but it is close to 15% if the size of the matrix z is large.

```
numerrs =
1 5 0 9
pcterrs =
    0.1509
```

Another example using this function is in "Binary Symmetric Channel".

Purpose

Construct constant modulus algorithm (CMA) object
Syntax

Description

```
alg = cma(stepsize)
alg = cma(stepsize,leakagefactor)
```

The cma function creates an adaptive algorithm object that you can use with the lineareq function or dfe function to create an equalizer object. You can then use the equalizer object with the equalize function to equalize a signal. To learn more about the process for equalizing a signal, see "Using Adaptive Equalizer Functions and Objects".

Note After you use either lineareq or dfe to create a CMA equalizer object, you should initialize the equalizer object's Weights property with a nonzero vector. Typically, CMA is used with differential modulation; otherwise, the initial weights are very important. A typical vector of initial weights has a 1 corresponding to the center tap and 0s elsewhere.
alg = cma(stepsize) constructs an adaptive algorithm object based on the constant modulus algorithm (CMA) with a step size of stepsize.
alg = cma(stepsize, leakagefactor) sets the leakage factor of the CMA. leakagefactor must be between 0 and 1 . A value of 1 corresponds to a conventional weight update algorithm, while a value of 0 corresponds to a memoryless update algorithm.

Properties

The table below describes the properties of the CMA adaptive algorithm object. To learn how to view or change the values of an adaptive algorithm object, see "Accessing Properties of an Adaptive Algorithm".

Property	Description
AlgType	Fixed value, 'Constant Modulus'

Property	Description
StepSize	CMA step size parameter, a nonnegative real number
LeakageFactor	CMA leakage factor, a real number between 0 and 1

Algorithm

References

See Also

Referring to the schematics presented in "Overview of Adaptive Equalizer Classes", define w as the vector of all weights w_{i} and define u as the vector of all inputs u_{i}. Based on the current set of weights, w, this adaptive algorithm creates the new set of weights given by
(LeakageFactor) w + (StepSize) u*e
where the * operator denotes the complex conjugate.
lms, signlms, normlms, varlms, rls, lineareq, dfe, equalize, "Equalizers"
[1] Haykin, Simon, Adaptive Filter Theory, Third Ed., Upper Saddle River, NJ, Prentice-Hall, 1996.
[2] Johnson, Richard C., Jr., Philip Schniter, Thomas. J. Endres, et al., "Blind Equalization Using the Constant Modulus Criterion: A Review," Proceedings of the IEEE, Vol. 86, October 1998, pp. 1927-1950.
Purpose Package of communications scope classes
Syntax h = commscope.<type>(...)
Description h = commscope.<type>(...) returns a communications scope objecth of type type.
Type help commscope/types to get a complete list of available types.
Each type of communications scope object is equipped with functionsfor simulation and visualization. Type help commscope.<type> to getthe complete help on a specific communications scope object (e.g., helpcommscope.eyediagram).
See Also commscope.eyediagram

Purpose	Eye diagram analysis
Syntax	h = commscope.eyediagram h = commscope.eyediagram(property1,value1,...)
Description	h = commscope.eyediagram constructs an eye diagram object, h, with default properties. This syntax is equivalent to: $\begin{aligned} \mathrm{H}=\text { commscope.eyediagram } & (\text { 'SamplingFrequency', } 10000, \ldots \\ & \text { 'SamplesPerSymbol', } 100, \ldots \\ & \text { 'SymbolsPerTrace', } 2, \ldots \\ & \text { 'MinimumAmplitude', } \ldots, \ldots \\ & \text { 'MaximumAmplitude', } 1, \ldots \\ & \text { 'AmplitudeResolution', } 0.0100, . \\ & \text { 'MeasurementDelay', } 0, \ldots \\ & \text { 'PlotType', '2D Color', } . . \\ & \text { 'PlotTimeOffset', } 0, \ldots \\ & \text { 'PlotPDFRange', }[01], \ldots \\ & \text { 'ColorScale', 'linear', } . . \\ & \text { 'RefreshPlot', 'on'); } \end{aligned}$
	$\mathrm{h}=$ commscope.eyediagram(property1, value1, ...) constructs an eye diagram object, h , with properties as specified by property/value pairs. The eye diagram object creates a series of vertical histograms from zero to T seconds, at T_{s} second intervals, where T is a multiple of the symbol duration of the input signal and T_{s} is the sampling time. A vertical histogram is defined as the histogram of the amplitude of the input signal at a given time. The histogram information is used to obtain an approximation to the probability density function (PDF) of the input amplitude distribution. The histogram data is used to generate '2D Color' plots, where the color indicates the value of the PDF, and '3D Color' plots. The '2D Line' plot is obtained by constructing an eye diagram from the last n traces stored in the object, where a trace is defined as the segment of the input signal for a T second interval.

You can change the plot type by setting the PlotType property. The following plots are examples of each type.

2D-Color Eye Diagram

3D-Color Eye Diagram

Properties

An eye diagram scope object has the properties shown on the following table. All properties are writable except for the ones explicitly noted otherwise.

Property	Description
Type	Type of scope object ('Eye Diagram '). This property is not writable.
SamplingFrequency	Sampling frequency of the input signal in hertz.

Property	Description
SamplesPerSymbol	Number of samples used to represent a symbol. An increase in SamplesPerSymbol improves the resolution of an eye diagram.
SymbolRate	The symbol rate of the input signal. This property is not writable and is automatically computed based on SamplingFrequency and SamplesPerSymbol.
SymbolsPerTrace	The number of symbols spanned on the time axis of the eye diagram scope.
MinimumAmplitude	Minimum amplitude of the input signal. Signal values less than this value are ignored both for plotting and for measurement computation.
MaximumAmplitude	Maximum amplitude of the input signal. Signal values greater than this value are ignored both for plotting and for measurement computation.
AmplitudeResolution	The resolution of the amplitude axis. The amplitude axis is created from MinimumAmplitude to MaximumAmplitude with AmplitudeResolution steps.
MeasurementDelay	The time in seconds the scope waits before starting to collect data.

Property	Description
PlotType	Type of the eye diagram plot. The choices are '2D Color' (two dimensional eye diagram, where color intensity represents the probability density function values), '3D Color' (three dimensional eye diagram, where the z-axis represents the probability density function values), and '2D Line ' (two dimensional eye diagram, where each trace is represented by a line).
NumberOfStoredTraces	The number of traces stored to display the eye diagram in '2D Line ' mode.
PlotTimeOffset	The plot time offset input values must reside in the closed interval [-Tsym Tsym], where Tsym is the symbol duration. Since the eye diagram is periodic, if the value you enter is out of range, it wraps to a position on the eye diagram that is within range.
RefreshPlot	The switch that controls the plot refresh style. The choices are 'on ' (the eye diagram plot is refreshed every time the update method is called) and 'off' (the eye diagram plot is not refreshed when the update method is called).
PolorScale	The range of the PDF values that will be displayed in the '2D Color' mode. The PDF values outside the range are set to a constant mask color.
	The scale used to represent the color, the z-axis, or both. The choices are
'linear' (linear scale) and 'log ' (base	
ten logarithmic scale).	

Property	Description
SamplesProcessed	The number of samples processed by the eye diagram object. This value does not include the discarded samples during the MeasurementDelay period. This property is not writable.
OperationMode	When the operation mode is complex signal, the eye diagram collects and plots data on both the in-phase component and the quadrature component. When the operation mode is real signal, the eye diagram collects and plots real signal data.
Measurements	An eye diagram can display various types of measurements. All measurements are done on both the in-phase and quadrature signal, unless otherwise stated. For more information, see the Measurements section.

The resolution of the eye diagram in '2D Color' and '3D Color' modes can be increased by increasing SamplingFrequency, decreasing AmplitudeResolution, or both.

Changing MinimumAmplitude, MaximumAmplitude, AmplitudeResolution, SamplesPerSymbol, SymbolsPerTrace, and MeasurementDelay resets the measurements and updates the eye diagram.

An eye diagram object is equipped with seven methods for inspection, object management, and visualization.

update

This method updates the eye diagram object data.
update (h, x) updates the collected data of the eye diagram object h with the input x.

If the RefreshPlot property is set to 'on', the update method also refreshes the eye diagram figure.
The following example shows this method's use:
\% Create an eye diagram scope object
h = commscope.eyediagram('RefreshPlot', 'off')
\% Prepare a noisy sinusoidal as input
$x=\operatorname{awgn}(0.5 * \sin (2 * p i *(0: 1 / 100: 10))+j * \cos (2 * p i *(0: 1 / 100: 10)), 20) ;$
\% update the eyediagram
update(h, x);
\% Check the number of proccessed samples
h.SamplesProcessed

plot

This method displays the eye diagram figure.
The plot method has three usage cases:
plot(h) plots the eye diagram for the eye diagram object h with the current colormap or the default linespec.
plot (h, cmap), when used with the plottype set to '2D Color' or '3D Color ', plots the eye diagram for the object h , and sets the colormap to cmap.
plot(h,linespec), when used with the plottype set to '2D Line', plots the eye diagram for the object h using linespec as the line specification. See the help for plot for valid linespecs.
The following example shows this method's use:

```
% Create an eye diagram scope object
h = commscope.eyediagram;
% Prepare a noisy sinusoid as input
x = awgn(0.5*sin(2*pi*(0:1/100:10))+ ...
    j*0.5*cos(2*pi*(0:1/100:10)), 20);
```

```
% Update the eye diagram
update(h, x);
% Display the eye diagram figure
plot(h)
% Display the eye diagram figure with jet colormap
plot(h, jet(64))
% Display 2D Line eye diagram with red dashed lines
h.PlotType = '2D Line';
plot(h, 'r--')
```


exportdata

This method exports the eye diagram data.
[VERHIST EYEL HORHISTX HORHISTRF] = EXPORTDATA(H) Exports the eye diagram data collected by the eyediagram object H.

VERHIST is a matrix that holds the vertical histogram, which is also used to plot '2D Color' and '3D Color' eye diagrams.

EYEL is a matrix that holds the data used to plot 2D Line eye diagram. Each row of the EYEC holds one trace of the input signal.

HORHISTX is a matrix that holds the crossing point histogram data collected for the values defined by the CrossingAmplitudes property of the MeasurementSetup object. HORHISTX(i, :) represents the histogram for CrossingAmplitudes(i).

HORHISTRF is a matrix that holds the crossing point histograms for rise and fall time levels. HORHISTRF(i,:) represents the histogram for AmplitudeThreshold(i).

The following example shows this method's use:

```
% Create an eye diagram scope object
h = commscope.eyediagram('RefreshPlot', 'off');
% Prepare a noisy sinusoidal as input
x = awgn(0.5*sin(2*pi*(0:1/100:10))+ ...
    j*0.5*}\operatorname{cos(2*pi*(0:1/100:10)), 20);
```

```
% Update the eyediagram
update(h, x);
% Export the data
[eyec eyel horhistx horhistrf] = exportdata(h);
% Plot line data
t=0:1/h.SamplingFrequency:h.SymbolsPerTrace/h.SymbolRate;
plot(t, real(eyel)); xlabel('time (s)');...
    ylabel('Amplitude (AU)'); grid on;
% Plot 2D Color data
t=0:1/h.SamplingFrequency:h.SymbolsPerTrace/h.SymbolRate;
a=h.MinimumAmplitude:h.AmplitudeResolution:h.MaximumAmplitude;
imagesc(t,a,eyec); xlabel('time (s)'); ylabel('Amplitude (AU)');
```


reset

This method resets the eye diagram object.
reset (h) resets the eye diagram object h. Resetting h clears all the collected data.
The following example shows this method's use:
\% Create an eye diagram scope object
h = commscope.eyediagram('RefreshPlot', 'off');
\% Prepare a noisy sinusoidal as input
$x=\operatorname{awgn}\left(0.5^{*} \sin \left(2 *\right.\right.$ pi* $\left.^{*}(0: 1 / 100: 10)\right)+\ldots$
j*0.5*cos(2*pi*(0:1/100:10)), 20);
update(h, x); \% update the eyediagram
h.SamplesProcessed \quad \% Check the number of proccessed samples
reset(h); \% reset the object
h.SamplesProcessed \quad \% Check the number of proccessed samples

copy

This method copies the eye diagram object.
$h=$ copy (ref_obj) creates a new eye diagram object h and copies the properties of object h from properties of ref_obj.

The following example shows this method's use:

```
% Create an eye diagram scope object
h = commscope.eyediagram('MinimumAmplitude', -3, ...
    'MaximumAmplitude', 3);
disp(h); % display object properties
h1 = copy(h)
```


disp

This method displays properties of the eye diagram object.
disp(h) displays relevant properties of eye diagram object h .
If a property is not relevant to the object's configuration, it is not displayed. For example, for a commscope.eyediagram object, the ColorScale property is not relevant when PlotType property is set to '2D Line'. In this case the ColorScale property is not displayed.
The following is an example of its use:

```
% Create an eye diagram scope object
h = commscope.eyediagram;
% Display object properties
disp(h);
h = commscope.eyediagram('PlotType', '2D Line')
```


close

This method closes the eye diagram object figure.
close (h) closes the figure of the eye diagram object h.
The following example shows this method's use:

```
% Create an eye diagram scope object
h = commscope.eyediagram;
% Call the plot method to display the scope
plot(h);
%Wait for 1 seconds
pause(1)
% Close the scope
close(h)
```


analyze

This methods executes eye diagram measurements. ANALYZE(H) executes the eye diagram measurements on the collected data of the eye diagram scope object H. The results of the measurements are stored in the Measurements property of H. See "Measurements" on page 2-89 for more information.

Measurements You can obtain the following measurements on an eye diagram:

- Amplitude Measurements
- Eye Amplitude
- Eye Crossing Amplitude
- Eye Crossing Percentage
- Eye Height
- Eye Level
- Eye SNR
- Quality Factor
- Vertical Eye Opening
- Time Measurements
- Deterministic Jitter
- Eye Crossing Time
- Eye Delay
- Eye Fall Time
- Eye Rise Time
- Eye Width
- Horizontal Eye Opening
- Peak-to-Peak Jitter
- Random Jitter
- RMS Jitter
- Total Jitter

The deterministic jitter, horizontal eye opening, quality factor, random jitter, and vertical eye opening measurements utilize a dual-Driac algorithm. Jitter is the deviation of a signal's timing event from its intended (ideal) occurrence in time [1]. Jitter can be represented with a dual-Driac model. A dual-Driac model assumes that the jitter has two components: deterministic jitter (DJ) and random jitter (RJ). The DJ PDF comprises two delta functions, one at μ_{L} and one at μ_{R}. The RJ PDF is assumed to be Gaussian with zero mean and variance σ.

The Total Jitter (TJ) PDF is the convolution of these two PDFs, which is composed of two Gaussian curves with variance σ and mean values μ_{L} and μ_{R}. See the following figure.

The dual-Dirac model is described in [5] in more detail. The amplitude of the two Dirac functions may not be the same. In such a case, the analyze method estimates these amplitudes, ρ_{L} and ρ_{R}.

Amplitude Measurements

You can use the vertical histogram to obtain a variety of amplitude measurements. For complex signals, measurements are done on both in-phase and the quadrature components, unless otherwise specified. For amplitude measurements, at least one bin per vertical histogram must reach 10 hits before the measurement is taken, ensuring higher accuracy.

Eye Amplitude (EyeAmplitude)

Eye Amplitude, measured in Amplitude Units (AU), is defined as the distance between two neighboring eye levels. For an NRZ signal, there are only two levels: the high level (level 1 in figure) and the low level (level 0 in figure). The eye amplitude is the difference of these two values, as shown in figure [3].

Eye Crossing Amplitude (EyeCrossingLevel)

Eye crossing amplitudes are the amplitude levels at which the eye crossings occur, measured in Amplitude Units (AU). The analyze method calculates this value using the mean value of the vertical histogram at the crossing times [3]. See the following figure.

The next figure shows the vertical histogram at the first eye crossing time.

Eye Crossing Percentage (EyeOpeningVer)

Eye Crossing Percentage is the location of the eye crossing levels as a percentage of the eye amplitude.

Eye Height (EyeHeight)

Eye Height, measured in Amplitude Units (AU), is defined as the 3σ distance between two neighboring eye levels.

For an NRZ signal, there are only two levels: the high level (level 1 in figure) and the low level (level 0 in figure). The eye height is the difference of the two 3σ points, as shown in the next figure. The 3σ point is defined as the point that is three standard deviations away from the mean value of a PDF.

Eye Level (EyeLevel)

Eye Level is the amplitude level used to represent data bits, measured in Amplitude Units (AU).

For an ideal NRZ signal, there are two eye levels: +A and -A . The analyze method calculates eye levels by estimating the mean value of the vertical histogram in a window around the EyeDelay, which is also the 50% point between eye crossing times [3]. The width of this window is determined by the EyeLevelBoundary property of the eyemeasurementsetup object, shown in the next figure.

The analyze method calculates the mean value of all the vertical histograms within the eye level boundaries. The mean vertical histogram appears in the following figure. There are two distinct PDFs, one for each eye level. The mean values of the individual histograms are the eye levels as shown in this figure.

Eye SNR (EyeSNR)

Eye signal-to-noise ratio is defined as the ratio of the eye amplitude to the sum of the standard deviations of the two eye levels. It can be expressed as:
$\mathrm{SNR}=\frac{L_{1}-L_{0}}{\sigma_{1}+\sigma_{0}}$
where L_{1} and L_{0} represent eye level 1 and 0 , respectively, and σ_{1} and σ_{2} are the standard deviation of eye level 1 and 0 , respectively.
For an NRZ signal, eye level 1 corresponds to the high level, and the eye level 0 corresponds to low level.

Quality Factor (QualityFactor)

The analyze method calculates Quality Factor the same way as the eye SNR. However, instead of using the mean and standard deviation values of the vertical histogram for L_{1} and σ_{1}, the analyze method uses the mean and standard deviation values estimated using the dual-Dirac method. [2] See dual-Dirac section for more detail.

Vertical Eye Opening (EyeOpeningVer)

Vertial Eye Opening is defined as the vertical distance between two points on the vertical histogram at EyeDelay that corresponds to the BER value defined by the BERThreshold property of the eyemeasurementsetup object. The analyze method calculates this measurement taking into account the random and deterministic components using a dual-Dirac model [5] (see the Dual Dirac Section). A typical BER value for the eye opening measurements is 10^{-12}, which approximately corresponds to the 7σ point assuming a Gaussian distribution.

Time Measurements

You can use the horizontal histogram of an eye diagram to obtain a variety of timing measurements. For time measurements, at least one bin per horizontal histogram must reach 10 hits before the measurement is taken.

Deterministic Jitter (DeterminnisticJitter)

Deterministic Jitter is the deterministic component of the jitter. You calculate it using the tail mean value, which is estimated using the dual-Dirac method as follows [5]:

DJ $=\mu_{L}-\mu_{R}$

where μ_{L} and μ_{R} are the mean values returned by the dual-Dirac algorithm.

Eye Crossing Time (EyeCrossingTime)

Eye crossing times are calculated as the mean of the horizontal histogram for each crossing point, around the reference amplitude level. This value is measured in seconds. The mean value of all the horizontal PDFs is calculated in a region defined by the CrossingBandWith property of the eyemeasurementsetup object.
The region is from $-A_{\text {total }}{ }^{*} B W$ to $+A_{\text {total }}{ }^{*} B W$, where $A_{\text {total }}$ is the total amplitude range of the eye diagram (i.e., $A_{\text {total }}=A_{\max }-A_{\min }$) and $B W$ is the crossing band width, shown in the following figure.

The following figure shows the average PDF in this region. Because this example assumes two symbols per trace, there are two crossing points.

Eye Delay (EyeDelay)

Eye Delay is the distance from the midpoint of the eye to the time origin, measured in seconds. The analyze method calculates this distance using the crossing time. For a symmetric signal, EyeDelay is also the best sampling point.

Eye Fall Time (EyeFallTime)

Eye Fall Time is the mean time between the high and low threshold values defined by the AmplitudeThreshold property of the
eyemeasurementsetup object. The previous figure shows the fall time calculated from 10% to 90% of the eye amplitude.

Eye Rise Time (EyeRiseTime)

Eye Rise Time is the mean time between the low and high threshold values defined by the AmplitudeThreshold property of the eyemeasurementsetup object. The following figure shows the rise time calculated from 10% to 90% of the eye amplitude.

Eye Width (EyeWidth)

Eye Width is the horizontal distance between two points that are three standard deviations (3σ) from the mean eye crossing times, towards the center of the eye. The value for Eye Width measurements is seconds.

Horizontal Eye Opening (EyeOpeningHor)

Horizontal Eye Opening is the horizontal distance between two points on the horizontal histogram that correspond to the $B E R$ value defined by the BERThreshold property of the eyemeasurementsetup object. The measurement is take at the amplitude value defined by the ReferenceAmplitude property of the eyemeasurementsetup object. It is calculated taking into account the random and deterministic components using a dual-Dirac model [5] (see the Dual Dirac Section).

A typical $B E R$ value for the eye opening measurements is 10^{-12}, which approximately corresponds to the 7σ point assuming a Gaussian distribution.

Peak-to-Peak Jitter (JitterP2P)

Peak-To-Peak Jitter is the difference between the extreme data points of the histogram.

Random Jitter (RandomJitter)

Random Jitter is defined as the Gaussian unbounded component of the jitter. The analyze method calculates it using the tail standard deviation estimated using the dual-Dirac method as follows [5]:
$R J=\left(Q_{\mathrm{L}}+Q_{\mathrm{R}}\right){ }^{*} \sigma$
where
$Q_{\mathrm{L}}=\sqrt{2} * e r f c^{-1}\left(\frac{2 * B E R}{\rho_{L}}\right)$
and $Q_{\mathrm{R}}=\sqrt{2} * \operatorname{erfc}^{-1}\left(\frac{2 * B E R}{\rho_{R}}\right)$
$B E R$ is the bit error ratio at which the random jitter is calculated. It is defined with the BERThreshold property of the eyemeasuremensetup object.

RMS Jitter (JitterRMS)

RMS Jitter is the standard deviation of the jitter calculated from the horizontal histogram.

Total Jitter (TotalJitter)

Total Jitter is the sum of the random jitter and the deterministic jitter [5].

Measurement A number of set-up parameters control eye diagram measurements. Setup Parameters This section describes these set-up parameters and the measurements they affect.

Eye Level Boundaries

Eye Level Boundaries are defined as a percentage of the symbol duration. The analyze method calculates the eye levels by averaging the vertical histogram within a given time interval defined by the eye level boundaries. A common value you can use for NRZ signals is 40% to 60%. For RZ signals, a narrower band of 5% is more appropriate. See Eye Level for more information. The default setting for Eye level Boundaries
is a 2 x 1 vector where the first element is the lower boundary and the second element is the upper boundary.

Reference Amplitude

Reference Amplitude is the boundary value at which point the signal crosses from one signal level to another. Reference amplitude represents the decision boundary of the modulation scheme. This value is used to perform jitter measurements. The default setting for Reference Amplitude is a 2×1 double vector where the first element is the lower boundary and the second element is the upper boundary.

The crossing instants of the input signal are detected and recorded as crossing times. A common value you can use for NRZ signals is 0 . For RZ signals, you can use the mean value of 1 and 0 levels. Reference amplitude is stored in a 2 -by-N matrix, where the first row is the in-phase values and second row is the quadrature values. See Eye Crossing Time for more information.

Crossing Bandwidth

Crossing Bandwidth is the amplitude band used to measure the crossing times of the eye diagram. Crossing Bandwidth represents a percentage of the amplitude span of the eye diagram, typically 5%. See Eye Crossing Time for more information. The default setting for Crossing Bandwidth is 0.0500 .

Bit Error Rate Threshold

The eye opening measurements, random, and total jitter measurements are performed at a given BER value. This BER value defines the BER threshold. A typical value is $1 \mathrm{e}^{-12}$. The default setting for Bit Error Threshold is $1.0000 \mathrm{e}^{-12}$

Amplitude Threshold

The rise time of the signal is defined as the time required for the signal to travel from lower amplitude threshold to the upper amplitude threshold. The fall time, measured from the upper amplitude threshold to the lower amplitude threshold, is defined as a percentage of the eye amplitude. The default setting is 10% for the lower threshold and 90%
for the upper threshold. See Eye Rise Time and Eye Fall Time for more information.

Jitter Hysteresis

You can use the JitterHysteresis property of the eyemeasurementsetup object to remove the effect of noise from the horizontal histogram estimation. The default value for Jitter Hysteresis is zero.

If channel noise impairs the signal being tested, as shown in the following figure, the signal may seem like it crosses the reference amplitude level multiple times during a single $0-1$ or 1-0 transition.

See the zoomed-in image for more detail.

To eliminate the effect of noise, define a hysteresis region between two threshold values: $A_{\text {ref }}+\Delta A$ and $A_{\text {ref }}-\Delta A$, where $A_{\text {ref }}$ is the reference amplitude value and $\Delta \mathrm{A}$ is the jitter hysteresis value. If the signal crosses both threshold values, level crossing is declared. Then, linear interpolation calculates the crossing point in the horizontal histogram estimation.

Examples

```
% Construct an eye diagram object for signals in the range
% of [-3 3]
h = commscope.eyediagram('MinimumAmplitude', -3, ...
    'MaximumAmplitude', 3)
% Construct an eye diagram object for a signal with
% 1e-3 seconds of transient time
h = commscope.eyediagram('MeasurementDelay', 1e-3)
% Construct an eye diagram object for '2D Line' plot type
% with }100\mathrm{ traces to display
h = commscope.eyediagram('PlotType', '2D Line', ...
    'NumberOfStoredTraces', 100)
```


See Also

commscope

References

[1] Nelson Ou, et al, Models for the Design and Test of Gbps-Speed Serial Interconnects,IEEE Design \& Test of Computers, pp. 302-313, July-August 2004.
[2] HP E4543A Q Factor and Eye Contours Application Software, Operating Manual, http://agilent.com
[3] Agilent 71501D Eye-Diagram Analysis, User's Guide, http://www.agilent.com
[4] 4] Guy Foster, Measurement Brief: Examining Sampling Scope Jitter Histograms, White Paper, SyntheSys Research, Inc., July 2005.
[5] Jitter Analysis: The dual-Dirac Model, RJ/DJ, and Q-Scale, White Paper, Agilent Technologies, December 2004, http://www.agilent.com

Purpose Create Scatter Plot scope

Syntax

Description
h = commscope.ScatterPlot
h = commscope.ScatterPlot('PropertyName',PropertyValue,...)
commscope. ScatterPlot collects data and displays results in a Figure window. You can create a scatter plot using a default configuration or by defining properties.
$\mathrm{h}=$ commscope.ScatterPlot returns a scatter plot scope, h.
h = commscope.ScatterPlot('PropertyName',PropertyValue,...) returns a scatter plot scope, h, with property values set to PropertyValues. See the Properties section of this help page for valid PropertyNames.

A ScatterPlot object has the properties shown on the following table. All properties are writable except for the ones explicitly noted otherwise.

Property	Description
Type	'Scatter Plot'. This is a read-only property.
SamplingFrequency	Sampling frequency of the input signal in Hz.
SamplesPerSymbol	Number of samples used to represent a symbol.
SymbolRate	The symbol rate of the input signal. This property is read-only and is automatically computed based on SamplingFrequency and SamplesPerSymbol.
MeasurementDelay	The time in seconds the scope will wait before starting to collect data.

Property	Description
SamplingOffset	The number of samples skipped at each sampling point relative to the MeasurementDelay.
Constellation	Expected constellation of the input signal.
RefreshPlot	The switch that controls the plot refresh style. The choices are: \bullet 'on' - The scatter plot refreshes every time the update method is called.
- 'off - The scatter plot does	
not refresh when the update	
method is called.	

Property	Description
	the constellation points. The choices are 'on' or 'off". -ConstellationStyle - Line style of signal trajectory -Grid - The switch to control the visibility of the grid. The choices are 'on' or 'off".

Methods
A Scatter Plot has the following methods.

autoscale

This method automatically scales the plot figure so its entire contents displays.

close

This method closes the scatter plot figure.

disp

This method displays the scatter plot properties.

plot

This method creates a scatter plot figure. If a figure exists, this method updates the figure's contents.
plot (h) plots a scatter plot figure using default settings.

reset

This method resets the collected data of the scatter plot object.
reset (h) resets the collected data of the scatter plot object h. Resetting h also clears the plot and NumberOfSymbols.

update

This method updates the collected data of the scatter plot.
update (h, r) updates the collected data of the scatter plot, where h is the handle of the scatter plot object and r is the complex input data under test. This method updates the collected data and the plot (if RefreshPlot is true).

Purpose Create EVM measurement object

h = commmeasure.EVM
h = commmeasure.EVM('PropertyName',PropertyValue,...)

Syntax

Description

Properties
Props
$\mathrm{h}=$ commmeasure. EVM constructs a default error vector magnitude (EVM) object, h.
h = commmeasure.EVM('PropertyName',PropertyValue,...) constructs an EVM object, h, with property values set to PropertyValues. See Properties for valid a list of valid PropertyNames.

The EVM object measures RMS EVM, maximum EVM, and percentile EVM. The unit for each measurement is a percentage.

An EVM measurement object has the properties shown in the following table. You can write to all properties except for the ones explicitly noted otherwise.

Property	Description
Type	'EVM Measurements'. This property is read only.
RMSEVM	RMS EVM measurement result. This property is read only.
MaximumEVM	Maximum EVM measurement result. This property is read only.
Percentile	Percentile value to calculate PercentileEVM.
PercentileEVM	Percentile EVM measurement result. This property is read only.
NumberOfSymbols	Number of processed symbols.

Methods

An EVM measurement object has the following three methods.

update

This method updates the EVM measurements with new data.
update (h, rcv, xmt) updates the EVM object h with new data. RCV represents the symbols under test, and XMT represents the ideal symbols.

reset

This method resets the EVM object.
reset (h) resets the EVM object h . This operation removes all the previously collected data from the object memory.
reset (h, meas1, ...) resets the meas1 measurement of the EVM object h. meas 1 can be 'RMSEVM', 'MaximumEVM', or 'PercentileEVM'. The NumberOfSymbols property is not reset. You can use this method for implementing frame-based measurements.

copy

This method copies the EVM object.
hcopy $=$ copy (h) copies the EVM object handle returns it in hcopy. h and hcopy are independent but identical objects; modifying the object does not affect hcopy object.

Algorithm for EVM Calculations

The block calculates EVM through I-Q value samples at the symbol time. If $x(t)$ is the ideal transmitter signal and $y(t)$ is the signal under test, then the error vector is defined as $e(n)=y(n)-x(n)$ where $n=n T$ and T is the symbol duration.

The RMS EVM for a frame is defined as

$$
E V M=\sqrt{\frac{P_{\text {error }}}{\mathrm{P}_{\text {reference }}}}
$$

The RMS EVM for a symbol is defined as
where

$$
P_{\text {error }}=\sum_{n=0}^{L-1}|e(n)|^{2}
$$

and

$$
\mathrm{P}_{\text {reference }}=\sum_{n=0}^{L-1}|x(n)|^{2} .
$$

$$
\operatorname{EVM}(\%)=\mathrm{EVM} * 100
$$

See Also
 commmeasure.MER

References [1] 3GPP TS 45.005 V8.1.0 (2008-05): Radio Access Network; Radio transmission and reception

Purpose

Create MER measurement object
Syntax
h = commmeasure.MER
h = commmeasure.MER('PropertyName',PropertyValue,...)
$\mathrm{h}=$ commmeasure.MER returns a default modulation error ratio (MER) object, h .
h = commmeasure.MER('PropertyName',PropertyValue,...) returns an MER object H, with property values set to PropertyValues. See Properties for a list of valid PropertyNames.

The MER object can be used to measure MER, minimum MER, and percentile MER, all in decibels.

Properties
An MER measurement object has the properties shown in the following table. You can write to all properties except for the ones explicitly noted otherwise.

Property	Description
Type	'MER Measurements'. This property is read only.
MERdB	MER measurement result (in decibels). This property is read-only.
MinimumMER	Minimum MER measurement result (in decibels). This property is read only.
Percentile	Percentile value to calculate PercentileMER.
PercentileMER	Percentile MER measurement result (in decibels). This property is read only.
NumberOfSymbols	Number of processed symbols.

Methods

Algorithm for MER Calculations

An MER measurement object has the following three methods.

update

This method updates the MER measurements with new data.
update (H, RCV, XMT) updates the MER object H with new data. RCV represents the symbols under test and XMT represents the ideal symbols.

reset

This method resets the MER object.
reset(h) resets the MER object h. This operation removes all the previously collected data from the object's memory.
reset (h, meas1, ...) resets the meas1 measurement of the EVM object h. meas1 can be 'MERdB', 'MinimumMER', or 'PercentileMER'. NumberOfSymbols property is not reset. You can use this format for implementing frame-based measurements.

copy

This method copies the MER object.
hcopy $=$ copy (h) copies the MER object h and returns it hcopy. h and hcopy are independent but identical objects; modifying the object h does not affect the object hcopy.

The block calculates the MER through I-Q value samples at the symbol time. If $x(t)$ is the ideal transmitter signal and $y(t)$ is the signal under test, then the error vector is defined as $e(n)=y(n)-x(n)$ where $n=n T$ and T is the symbol duration.

The MER for a frame, in dB , is defined as

$$
M E R=10 \log _{10}\left(\frac{\mathrm{P}_{\text {reference }}}{\mathrm{P}_{\text {error }}}\right)
$$

The MER for a symbol, in dB , is defined as

$$
\operatorname{MER}(n)=10 \log _{10}\left(\frac{\frac{P_{\text {reference }}}{L}}{|e(n)|^{2}}\right)
$$

where

$$
P_{\text {error }}=\sum_{n=0}^{L-1}|e(n)|^{2}
$$

and

$$
\mathrm{P}_{\text {reference }}=\sum_{n=0}^{L-1}|x(n)|^{2} .
$$

See Also
References
commmeasure.EVM
[1] Grieve, David. "Measurement guidelines for Digital Video Broadcasting (DVB) systems." European Telecommunications Standards Institute (ETSI): ETSI Technical Report, ETR 290.

Purpose Construct pattern generator object

Syntax $\quad h=$ commsrc.pattern

Description $\quad h=$ commsrc. pattern constructs a pattern generator object, h. This syntax is equivalent to:

```
h = COMMSRC.PATTERN('SamplingFrequency', 10000, ...
    'SamplesPerSymbol', 100, ...
    'PulseType', 'NRZ', ...
    'OutputLevels', [-1 1], ...
    'RiseTime', 0, ...
    'FallTime', 0, ...
    'DataPattern', 'PRBS7', ...
    'Jitter', commsrc.combinedjitter)
```


Properties

A pattern generator object has the properties shown on the following table. You can edit all properties, except those explicitly noted otherwise.

Property	Description
Type	Type of pattern generator object ('Pattern Generator'). This property is not writable.
SamplingFrequency	Sampling frequency of the input signal in hertz.
SymbolRate	The symbol rate of the input signal. This property depends upon the SamplingFequency and SamplesPerSymbol properties. This property is not writable.

Property	Description
SamplesPerSymbol	The number of samples representing a symbol. SamplesPerSymbol must be an integer. This property affects SymbolRate.
PulseType	The type of pulse the object generates. Pulse types available: return-to-zero (RZ) and nonreturn-to-zero (NRZ).
OutputLevels	The amplitude levels corresponding to the logical low and high values of the pulse.
DutyCycle	The duty cycle of the pulse the object generates. Displays calculated duty cycle based on pulse parameters. This property is not writable.
RiseTime	Specifies 10\% to 90\% rise time of the pulse in seconds.
PulseDuration	Pulse duration in seconds defined by IEEE STD 181 standard. (See the Return-to-Zero (RZ) Signal Conversion: Ideal Pulse to STD-181 figure in the Methods section.) Setting PulseType to return-to-zero enables this property.
FallTime	Specifies 10\% to 90\% fall time of the pulse in seconds.
DataPattern	The bit sequence the object uses. The following patterns are available: PRBS5 to PRBS15, PRBS23, PRBS31, and User Defined.

Property	Description
UserDataPattern	User-defined bit pattern consisting of a vector of ones and zeroes. Setting data pattern to user defined enables this property.
Jitter	Specifies jitter characteristics. Use this property to configure Random, Periodic and Dual Dirac Jitter.

Methods

A pattern generator object has five methods, as described in this section.

generate

This method outputs a frame worth of modulated and interpolated symbols. It has one input argument, which is the number of symbols in a frame. Its output is a double-column vector. You can call this method using the following syntax

```
x = generate(h, N)
```

where h is the handle to the object, N is the number of output symbols, and x is a double-column vector.

reset

This method resets the pattern generator to its default state. The property values do not reset unless they relate to the state of the object. This method has no input arguments.

idealtostd 181

This method converts the ideal pulse specifications to IEEE STD-181 specifications: 0% to 100% rise time (TR) and fall time (TF) convert to 10% to 90% rise and fall times with a 50% pulse width duration, as shown in the following figure. This method also sets the appropriate properties.
idealtostd181 $\left(\mathrm{t}_{\mathrm{R}}, \mathrm{t}_{\mathrm{F}}, \mathrm{PW}\right)$

IEEE STD-181 Return-to-Zero (RZ) Signal Parameters

std 181 toideal

This method converts the IEEE STD-181 pulse specifications, stored in the pattern generator, to ideal pulse specifications. This method converts the 10% to 90% rise and fall times to 0% to 100% rise and fall times ($T R$ and $T F$). It also converts the 50% pulse duration to pulse width (as shown in the following figure). Use the property values for IEEE STD-181 specifications

```
[tr tf pw] = stdstd181toideal(h)
```

where h is the pattern generator object handle and t_{R} is 0 to 100% rise time.

Ideal Pulse Non-Return-to-Zero (NRZ) Signal Parameters

computedcd

Computes the duty cycle distortion, DCD, of the pulse defined by the pattern generator object h.

DCD represents the ratio of the pulse on duration to the pulse off duration. For an NRZ pulse, on duration is the duration the pulse spends above the symbol boundary level. Off duration is the duration the pulse spends below zero.

```
dcd = computedcd(h)
```

The software calculates $D C D$ given $t_{R}, t_{F}, T_{\text {sym }}$. This formula assumes that the symbol boundary level is zero.

$$
\begin{aligned}
& T_{h}=\left(A_{h}-A_{l}\right) * \frac{t_{R}}{A_{l}}+\left(A_{h}-A_{l}\right) * \frac{t_{F}}{A_{l}}+\mathrm{PW}_{+} \\
& T_{l}=\left(A_{h}-A_{l}\right) * \frac{t_{R}}{A_{l}}+\left(A_{h}-A_{l}\right) * \frac{t_{F}}{A_{l}}+\mathrm{PW} . \\
& \mathrm{DCD}=\frac{T_{h}}{T_{l}}
\end{aligned}
$$

Where T_{h} is the duration of the high signal, T_{l} is the duration of the low signal, and DCD represents the ratio of the duration of the high signal to the low signal.

Purpose
 Create PN sequence generator package

```
Syntax
h = commsrc.pn
h = commsrc.pn(property1,value1,...)
```


Description

$\mathrm{h}=$ commsrc.pn creates a default PN sequence generator object h, and is equivalent to the following:

```
H = COMMSRC.PN('GenPoly',
[1 0 0 0 0 1 1], ...
    'InitialStates', [0 0 0 0 0 1], ...
    'CurrentStates', [0 0 0 0 0 1], ...
    'Mask', [0 0 0 0 0 1], ...
    'NumBitsOut', 1)
```

or

$\left[\begin{array}{lllllll}1 & 0 & 0 & 0 & 0 & 1 & 1\end{array}\right]$,											
'InitialStates', [00000001$]$,											
'CurrentStates', [0 0 0 0 0 1],											
$\begin{array}{ll}\text { 'Shift', } \\ \text { 'NumBitsOut', } & 0, \\ 1)\end{array}$											

h = commsrc.pn(property1, value1,...) creates a PN sequence generator object, h, with properties you specify as property/value pairs.

Properties

A PN sequence generator has the properties shown on the following table. All properties are writable except for the ones explicitly noted otherwise.

Property	Description
GenPoly	Generator polynomial vector array of bits; must be descending order

Property	Description
InitialStates	Vector array (with length of the generator polynomial order) of initial shift register values (in bits)
CurrentStates	Vector array (with length of the generator polynomial order) of present shift register values (in bits)
NumBitsOut	Number of bits to output at each generate method invocation
Mask or Shift	A mask vector of binary 0 and 1 values is used to specify which shift register state bits are XORed to produce the resulting output bit value.
Alternatively, a scalar shift value may be used to specify an equivalent shift (either a delay or advance) in the output sequence.	

seqgen.pn objects also have either a 'Mask' (vector of mask bits) or 'Shift' (scalar shift value) property.

The 'GenPoly' property values specify the shift register connections. Enter these values as either a binary vector or a vector of exponents of the nonzero terms of the generator polynomial in descending order of powers. For the binary vector representation, the first and last elements of the vector must be 1 . For the descending-ordered polynomial representation, the last element of the vector must be 0 . For more information and examples, see "LFSR SSRG Details" on page 2-558.

Methods

A PN sequence generator is equipped with the following methods.

generate

Generate [NumBitsOut x 1] PN sequence generator values
reset
Set the CurrentStates values to the InitialStates values

getshift

Get the actual or equivalent Shift property value

getmask

Get the actual or equivalent Mask property value

copy

Make an independent copy of a commsrc.pn object

disp

Display PN sequence generator object properties

Side Effects of Setting Certain Properties

LFSR SSRG	The generate method produces a pseudorandom noise (PN) sequence using a linear feedback shift register (LFSR). The LFSR is implemented using a simple shift register generator (SSRG, or Fibonacci) configuration, as shown below.

All r registers in the generator update their values at each time step according to the value of the incoming arrow to the shift register. The adders perform addition modulo 2 . The shift register is described by the 'GenPoly' property (generator polynomial), which is a primitive binary polynomial in $z, \mathrm{~g}_{\mathrm{r}} \mathrm{z}^{\mathrm{r}}+\mathrm{g}_{\mathrm{r}-1} \mathrm{z}^{\mathrm{r}-1}+\mathrm{g}_{\mathrm{r}-2} \mathrm{z}^{\mathrm{r}-2}+\ldots+\mathrm{g}_{0}$. The coefficient g_{k} is 1 if there is a connection from the kth register, as labeled in the preceding diagram, to the adder. The leading term g_{r} and the constant term g_{0} of the 'GenPoly ' property must be 1 because the polynomial must be primitive.

You can specify the Generator polynomial parameter using either of these formats:

- A vector that lists the coefficients of the polynomial in descending order of powers. The first and last entries must be 1 . Note that the length of this vector is one more than the degree of the generator polynomial.
- A vector containing the exponents of z for the nonzero terms of the polynomial in descending order of powers. The last entry must be 0 .

For example, $\left[\begin{array}{llllllll}1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 1\end{array}\right]$ and $\left[\begin{array}{lll}8 & 2 & 0\end{array}\right]$ represent the same polynomial, $p(z)=z^{8}+z^{2}+1$.

The Initial states parameter is a vector specifying the initial values of the registers. The Initial states parameter must satisfy these criteria:

- All elements of the Initial states vector must be binary numbers.
- The length of the Initial states vector must equal the degree of the generator polynomial.

Note At least one element of the Initial states vector must be nonzero in order for the block to generate a nonzero sequence. That is, the initial state of at least one of the registers must be nonzero.

For example, the following table indicates two sets of parameter values that correspond to a generator polynomial of $p(z)=z^{8}+z^{2}+1$.

Quantity	Example 1	Example 2
Generator polynomial	$\left.\begin{array}{l} \mathrm{g} 1 \\ 1 \end{array}\right]=\left[\begin{array}{llllllll} 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \end{array}\right.$	g 2 = $\left[\begin{array}{lll}8 & 2\end{array}\right]$
Degree of generator polynomial	8, which is length (g1)-1	8
Initial states	$\left[\begin{array}{llllllll}1 & 0 & 0 & 0 & 0 & 0 & 1 & 0\end{array}\right]$	$\left[\begin{array}{llllllll}1 & 0 & 0 & 0 & 0 & 0 & 1 & 0\end{array}\right]$

Output mask vector (or scalar shift value) shifts the starting point of the output sequence. With the default setting for this parameter, the only connection is along the arrow labeled m_{0}, which corresponds to a shift of 0 . The parameter is described in greater detail below.

You can shift the starting point of the PN sequence with Output mask vector (or scalar shift value). You can specify the parameter in either of two ways:

- An integer representing the length of the shift
- A binary vector, called the mask vector, whose length is equal to the degree of the generator polynomial

The difference between the block's output when you set Output mask vector (or scalar shift value) to 0 , versus a positive integer d, is shown in the following table.

	$\mathbf{T}=\mathbf{0}$	$\mathbf{T}=\mathbf{1}$	$\mathbf{T}=\mathbf{2}$	\ldots	$\mathbf{T}=\mathbf{d}$	$\mathbf{T}=$ $\mathbf{d}+\mathbf{1}$
Shift $=0$	x_{0}	x_{1}	x_{2}	\ldots	x_{d}	$x_{\mathrm{d}+1}$
Shift $=\mathrm{d}$	x_{d}	$x_{\mathrm{d}+1}$	$x_{\mathrm{d}+2}$	\ldots	$x_{2 \mathrm{~d}}$	$x_{2 \mathrm{~d}+1}$

Alternatively, you can set Output mask vector (or scalar shift value) to a binary vector, corresponding to a polynomial in $z, \mathrm{~m}_{\mathrm{r}-1} \mathrm{z}^{\mathrm{r}-1}$ $+\mathrm{m}_{\mathrm{r}-2} \mathrm{z}^{\mathrm{r}-2}+\ldots+\mathrm{m}_{1} \mathrm{z}+\mathrm{m}_{0}$, of degree at most $\mathrm{r}-1$. The mask vector corresponding to a shift of d is the vector that represents $m(z)=z^{d}$ modulo $\mathrm{g}(z)$, where $\mathrm{g}(z)$ is the generator polynomial. For example, if the degree of the generator polynomial is 4 , then the mask vector corresponding to $d=2$ is $\left[\begin{array}{lll}0 & 1 & 0\end{array}\right]$], which represents the polynomial $m(z)=z^{2}$. The preceding schematic diagram shows how Output mask vector (or scalar shift value) is implemented when you specify it as a mask vector. The default setting for Output mask vector (or scalar shift value) is 0 . You can calculate the mask vector using the Communications Toolbox function shift2mask.

Sequences of Maximum Length

If you want to generate a sequence of the maximum possible length for a fixed degree, r, of the generator polynomial, you can set Generator polynomial to a value from the following table. See Proakis, John G., Digital Communications, Third edition, New York, McGraw Hill,

1995 for more information about the shift-register configurations that these polynomials represent.

r	Generator Polynomial	r	Generator Polynomial
2	$\left[\begin{array}{lll}2 & 1 & 0\end{array}\right]$	21	$\left[\begin{array}{llll}21 & 19 & 0\end{array}\right]$
3	$\left[\begin{array}{lll}3 & 2 & 0\end{array}\right]$	22	$\left[\begin{array}{lll}22 & 21 & 0\end{array}\right]$
4	$\left[\begin{array}{lll}4 & 3 & 0\end{array}\right]$	23	$\left[\begin{array}{lll}23 & 18 & 0\end{array}\right]$
5	$\left[\begin{array}{lll}5 & 3 & 0\end{array}\right]$	24	$\left[\begin{array}{lllll}24 & 23 & 22 & 17 & 0\end{array}\right]$
6	$\left[\begin{array}{lll}6 & 5 & 0\end{array}\right]$	25	$\left[\begin{array}{lll}25 & 22 & 0\end{array}\right]$
7	$\left[\begin{array}{lll}7 & 6 & 0\end{array}\right]$	26	$\left[\begin{array}{lllll}26 & 25 & 24 & 20 & 0\end{array}\right]$
8	[8 865	27	$\left[\begin{array}{lllll}27 & 26 & 25 & 22 & 0\end{array}\right]$
9	[$\left.\begin{array}{llll}9 & 5 & 0\end{array}\right]$	28	[$\left.\begin{array}{llll}28 & 25 & 0\end{array}\right]$
10	[10 7 0]	29	$\left[\begin{array}{lll}29 & 27 & 0\end{array}\right]$
11	$\left[\begin{array}{llll}11 & 9 & 0\end{array}\right]$	30	$\left[\begin{array}{llllll}30 & 29 & 28 & 7 & 0\end{array}\right]$
12	$\left[\begin{array}{lllll}12 & 11 & 8 & 6 & 0\end{array}\right]$	31	$\left[\begin{array}{lll}31 & 28 & 0\end{array}\right]$
13	$\left[\begin{array}{llllll}13 & 12 & 10 & 9 & 0\end{array}\right]$	32	$\left[\begin{array}{llllll}32 & 31 & 30 & 10 & 0\end{array}\right]$
14	$\left[\begin{array}{llllll}14 & 13 & 8 & 4 & 0\end{array}\right]$	33	$\left[\begin{array}{llll}33 & 20 & 0\end{array}\right]$
15	[$\left.\begin{array}{llll}15 & 14 & 0\end{array}\right]$	34	$\left[\begin{array}{llllll}34 & 15 & 14 & 1 & 0\end{array}\right]$
16	$\left[\begin{array}{lllll}16 & 15 & 13 & 4 & 0\end{array}\right]$	35	$\left[\begin{array}{llll}35 & 2 & 0\end{array}\right]$
17	[$\left.\begin{array}{llll}17 & 14 & 0\end{array}\right]$	36	$\left[\begin{array}{llll}36 & 11 & 0\end{array}\right]$
18	$\left[\begin{array}{llll}18 & 11 & 0\end{array}\right]$	37	[37 12102000$]$
19	$\left[\begin{array}{llllll}19 & 18 & 17 & 14 & 0\end{array}\right]$	38	[38 655100
20	$\left[\begin{array}{llll}20 & 17 & 0\end{array}\right]$	39	[39 8 0]
40	$\left[\begin{array}{lllll}40 & 5 & 4 & 3 & 0\end{array}\right]$	47	[47 14 0]
41	$\left[\begin{array}{llll}41 & 3 & 0\end{array}\right]$	48	[48 28827100
42	$\left[\begin{array}{lllll}42 & 23 & 22 & 1 & 0\end{array}\right]$	49	[49 9 0]

\mathbf{r}	Generator Polynomial	\mathbf{r}	Generator Polynomial
43	$\left[\begin{array}{llllll}43 & 6 & 4 & 3 & 0\end{array}\right]$	50	$\left[\begin{array}{llllll}5 & 4 & 3 & 2 & 0\end{array}\right]$
44	$\left[\begin{array}{llllll}44 & 6 & 5 & 2 & 0\end{array}\right]$	51	$\left[\begin{array}{lllll}51 & 6 & 3 & 1 & 0\end{array}\right]$
45	$\left[\begin{array}{lllllll}45 & 4 & 3 & 1 & 0\end{array}\right]$	52	$\left[\begin{array}{llllll}52 & 3 & 0\end{array}\right]$
46	$\left[\begin{array}{llllllll}46 & 21 & 10 & 1 & 0\end{array}\right]$	53	$\left[\begin{array}{llllll}5 & 6 & 2 & 1 & 0\end{array}\right]$

Examples Setting up the PN sequence generator

This figure defines a PN sequence generator with a generator polynomial $p(z)=z^{6}+z+1$. You can set up the PN sequence generator by typing the following at the MATLAB command line:

```
h1 = commsrc.pn('GenPoly', [1 0 0 0 0 1 1], 'Mask', [1 1 0 1 0 1]);
h2 = commsrc.pn('GenPoly', [1 0 0 0 0 1 1], 'Shift', 22);
mask2shift ([1 0 0 0 0 1 1],[1 1 0 1 0 1])
```

The output of the example is given below:
ans =

Alternatively, you can input GenPoly as the exponents of z for the nonzero terms of the polynomial in descending order of powers:

```
h = seqgen.pn('GenPoly', [\begin{array}{lll}{6}&{1}&{0}\end{array}],\mp@subsup{'}{M}{\prime}Mask', [\begin{array}{llllll}{1}&{1}&{0}&{1}&{0}&{1])}\end{array})
```


General Use of commsrc.pn

The following is an example of typical usage:

```
% Construct a PN object
h = commsrc.pn('Shift', O);
% Output 10 PN bits
set(h, 'NumBitsOut', 10);
generate(h)
% Output }10\mathrm{ more PN bits
generate(h)
% Reset (to the initial shift register state values)
reset(h);
% Output 4 PN bits
set(h, 'NumBitsOut', 4);
generate(h)
```


Behavior of a Copied commsrc.pn Object

When a commsrc.pn object is copied, its states are also copied. The subsequent outputs, therefore, from the copied object are likely to be different from the initial outputs from the original object. The following code illustrates this behavior:

```
h = commsrc.pn('Shift', 0);
set(h, 'NumBitsOut', 5);
generate(h)
```

h generates the sequence:

However, if h is copied to g, and g is made to generate a sequence:
g=copy (h);
generate(g)
the generated sequence is different from that initially generated from h :

$$
\begin{aligned}
& 0 \\
& 1 \\
& 0 \\
& 0 \\
& 0
\end{aligned}
$$

This difference occurs because the state of h having generated 5 bits was copied to g . If g is reset:

```
reset(g);
generate(g)
```

then it generates the same sequence that h did:
1
0
0
0
0
See Also
mask2shift, shift2mask

Purpose
 Source code mu-law or A-law compressor or expander

Syntax

```
out = compand(in,param,v)
out = compand(in,Mu,v,'mu/compressor')
out = compand(in,Mu,v,'mu/expander')
out = compand(in,A,v,'A/compressor')
out = compand(in,A,v,'A/expander')
```


Description

out = compand(in, param, v) implements a μ-law compressor for the input vector in. Mu specifies μ, and v is the input signal's maximum magnitude. out has the same dimensions and maximum magnitude as in.
out = compand(in, Mu, v, 'mu/compressor') is the same as the syntax above.
out = compand(in, Mu, v,'mu/expander') implements a μ-law expander for the input vector in. Mu specifies μ and v is the input signal's maximum magnitude. out has the same dimensions and maximum magnitude as in.
out = compand(in, A, v,'A/compressor') implements an A-law compressor for the input vector in. The scalar A is the A-law parameter, and v is the input signal's maximum magnitude. out is a vector of the same length and maximum magnitude as in.
out $=$ compand(in, A, v, 'A/expander') implements an A-law expander for the input vector in. The scalar A is the A-law parameter, and v is the input signal's maximum magnitude. out is a vector of the same length and maximum magnitude as in.

Note The prevailing parameters used in practice are $\mu=255$ and A = 87.6.

Examples

The examples below illustrate the fact that compressors and expanders perform inverse operations.

```
compressed = compand(1:5,87.6,5,'a/compressor')
expanded = compand(compressed,87.6,5,'a/expander')
```

The output is

```
compressed =
    3.5296 4.1629 4.5333 4.7961 5.0000
expanded =
    1.0000 2.0000 3.0000 4.0000 5.0000
```


Algorithm

$$
y=\frac{V \log (1+\mu|x| / V)}{\log (1+\mu)} \operatorname{sgn}(x)
$$

where V is the maximum value of the signal x, μ is the μ-law parameter of the compander, \log is the natural logarithm, and sgn is the signum function (sign in MATLAB).

The output of the A-law compressor is

$$
y=\left\{\begin{array}{cc}
\frac{A|x|}{1+\log A} \operatorname{sgn}(x) & \text { for } 0 \leq|x| \leq \frac{V}{A} \\
\frac{V(1+\log (A|x| / V))}{1+\log A} \operatorname{sgn}(x) & \text { for } \frac{V}{A}<|x| \leq V
\end{array}\right.
$$

where A is the A-law parameter of the compander and the other elements are as in the μ-law case.

See Also
quantiz, dpcmenco, dpcmdeco, "Companding a Signal"

References [1] Sklar, Bernard, Digital Communications: Fundamentals and Applications, Englewood Cliffs, NJ, Prentice-Hall, 1988.

Purpose
 Syntax
 Description

Restore ordering of symbols using shift registers

```
deintrlved = convdeintrlv(data,nrows,slope)
[deintrlved,state] = convdeintrlv(data,nrows,slope)
[deintrlved,state] = convdeintrlv(data,nrows,slope,
    init_state)
```

deintrlved = convdeintrlv(data, nrows,slope) restores the ordering of elements in data by using a set of nrows internal shift registers. The delay value of the kth shift register is (nrows-k)*slope, where $\mathrm{k}=1,2,3, \ldots$, nrows. Before the function begins to process data, it initializes all shift registers with zeros. If data is a matrix with multiple rows and columns, the function processes the columns independently.
[deintrlved,state] = convdeintrlv(data, nrows,slope) returns a structure that holds the final state of the shift registers. state. value stores any unshifted symbols. state.index is the index of the next register to be shifted.
[deintrlved,state] =
convdeintrlv(data, nrows, slope, init_state) initializes the shift registers with the symbols contained in init_state.value and directs the first input symbol to the shift register referenced by init_state.index. The structure init_state is typically the state output from a previous call to this same function, and is unrelated to the corresponding interleaver.

Using an Interleaver-Deinterleaver Pair

To use this function as an inverse of the convintrlv function, use the same nrows and slope inputs in both functions. In that case, the two functions are inverses in the sense that applying convintrlv followed by convdeintrlv leaves data unchanged, after you take their combined delay of nrows* (nrows-1)*slope into account. To learn more about delays of convolutional interleavers, see "Delays of Convolutional Interleavers".
$\left.\begin{array}{ll}\text { Examples } & \begin{array}{l}\text { The example in "Effect of Delays on Recovery of Convolutionally } \\ \text { Interleaved Data" uses convdeintrlv and illustrates how you can } \\ \text { handle the delay of the interleaver/deinterleaver pair when recovering } \\ \text { data. }\end{array} \\ \text { The example on the reference page for muxdeintrlv illustrates how to } \\ \text { use the state output and init_state input with that function; the } \\ \text { process is analogous for this function. }\end{array}\right\}$

Purpose Convolutionally encode binary data

Syntax
\section*{Description}

```
code = convenc(msg,trellis)
code = convenc(msg,trellis,puncpat)
code = convenc(msg,trellis,...,init_state)
[code,final_state] = convenc(...)
```


Examples

code $=$ convenc(msg,trellis) encodes the binary vector msg using the convolutional encoder whose MATLAB trellis structure is trellis. For details about MATLAB trellis structures, see "Trellis Description of a Convolutional Encoder". Each symbol in msg consists of $\log 2(t r e l l i s . n u m I n p u t S y m b o l s)$ bits. The vector msg contains one or more symbols. The output vector code contains one or more symbols, each of which consists of log2(trellis. numOutputSymbols) bits.
code $=$ convenc(msg,trellis, puncpat) is the same as the syntax above, except that it specifies a puncture pattern, puncpat, to allow higher rate encoding. puncpat must be a vector of 1 s and 0 s, where the Os indicate the punctured bits. puncpat must have a length of at least log2(trellis.numOutputSymbols) bits.
code $=$ convenc(msg,trellis,...,init_state) allows the encoder registers to start at a state specified by init_state. init_state is an integer between 0 and trellis.numStates -1 and must be the last input parameter.
[code,final_state] = convenc(...) encodes the input message and also returns the encoder's state in final_state. final_state has the same format as init_state.

The command below encodes five two-bit symbols using a rate $2 / 3$ convolutional code. A schematic of this encoder is on the poly2trellis reference page.

```
code1 = convenc(randint(10,1,2,123),...
poly2trellis([5 4],[23 35 0; 0 5 13]));
```

The commands below define the encoder's trellis structure explicitly and then use convenc to encode 10 one-bit symbols. A schematic of this encoder is in "Trellis Description of a Convolutional Encoder".

```
trel = struct('numInputSymbols',2,'numOutputSymbols',4,...
'numStates',4,'nextStates',[0 2;0 2;1 3;1 3],...
'outputs',[0 3;1 2;3 0;2 1]);
code2 = convenc(randint(10,1),trel);
```

The commands below illustrate how to use the final state and initial state arguments when invoking convenc repeatedly. Notice that [code3; code4] is the same as the earlier example's output, code1.

```
trel = poly2trellis([5 4],[23 35 0; 0 5 13]);
msg = randint(10,1,2,123);
% Encode part of msg, recording final state for later use.
[code3,fstate] = convenc(msg(1:6),trel);
% Encode the rest of msg, using state as an input argument.
code4 = convenc(msg(7:10),trel,fstate);
```


Examples

See Also

References

For some commonly used puncture patterns for specific rates and polynomials, see the last three references.
distspec, vitdec, poly2trellis, istrellis, vitsimdemo, "Convolutional Coding"
[1] Clark, G. C. Jr. and J. Bibb Cain., Error-Correction Coding for Digital Communications, New York, Plenum Press, 1981.
[2] Gitlin, Richard D., Jeremiah F. Hayes, and Stephen B. Weinstein, Data Communications Principles, New York, Plenum, 1992.
[3] Yasuda, Y., et. al., "High rate punctured convolutional codes for soft decision Viterbi decoding," IEEE Transactions on Communications, vol. COM-32, No. 3, pp 315-319, Mar. 1984.
[4] Haccoun, D., and G. Begin, "High-rate punctured convolutional codes for Viterbi and sequential decoding," IEEE Transactions on Communications, vol. 37, No. 11, pp 1113-1125, Nov. 1989.
[5] Begin, G., et.al., "Further results on high-rate punctured convolutional codes for Viterbi and sequential decoding," IEEE Transactions on Communications, vol. 38, No. 11, pp 1922-1928, Nov. 1990.

Purpose Permute symbols using shift registers

```
Syntax intrlved = convintrlv(data,nrows,slope)
[intrlved,state] = convintrlv(data,nrows,slope)
[intrlved,state] = convintrlv(data,nrows,slope,init_state)
```


Description

Examples

The example below shows that convintrlv is a special case of the more general function muxintrlv. Both functions yield the same numerical results.

```
x = randint(100,1); % Original data
nrows = 5; % Use 5 shift registers
slope = 3; % Delays are 0, 3, 6, 9, and 12.
y = convintrlv(x,nrows,slope); % Interleaving using convintrlv.
delay = [0:3:12]; % Another way to express set of delays
y1 = muxintrlv(x,delay); % Interleave using muxintrlv.
isequal(y,y1)
```

The output below shows that y, obtained using convintrlv, and y 1 , obtained using muxintrlv, are the same. ans =

1
Another example using this function is in "Effect of Delays on Recovery of Convolutionally Interleaved Data".

The example on the muxdeintrlv reference page illustrates how to use the state output and init_state input with that function; the process is analogous for this function.

References

See Also
[1] Heegard, Chris, and Stephen B. Wicker, Turbo Coding, Boston, Kluwer Academic Publishers, 1999.

Purpose Convolution matrix of Galois field vector

Syntax $\quad A=\operatorname{convmtx}(c, n)$

Description A convolution matrix is a matrix, formed from a vector, whose inner product with another vector is the convolution of the two vectors.
$\mathrm{A}=$ convmtx (c, n) returns a convolution matrix for the Galois vector c. The output A is a Galois array that represents convolution with c in the sense that conv (c, x) equals

- A*x, if c is a column vector and x is any Galois column vector of length n . In this case, A has n columns and $\mathrm{m}+\mathrm{n}-1$ rows.
- $x^{\star} A$, if c is a row vector and x is any Galois row vector of length n. In this case, A has n rows and $m+n-1$ columns.

The code below illustrates the equivalence between using the conv function and multiplying by the output of convmtx.

```
m = 4;
c = gf([1; 9; 3],m); % Column vector
n = 6;
x = gf(randint(n, 1, 2^m),m);
ck1 = isequal(conv(c,x), convmtx(c,n)*x) % True
ck2 = isequal(conv(c',x'),x'*convmtx(c',n)) % True
```

The output is

```
ck1 =
```

1
ck2 =

See Also
conv, "Signal Processing Operations in Galois Fields"

Purpose Produce cyclotomic cosets for Galois field

Syntax
 cst = cosets(m)

Description

Examples

cst $=$ cosets (m) produces cyclotomic cosets mod $2^{\wedge} m-1$. Each element of the cell array cst is a Galois array that represents one cyclotomic coset.

A cyclotomic coset is a set of elements that share the same minimal polynomial. Together, the cyclotomic cosets $\bmod 2^{\wedge} m-1$ form a partition of the group of nonzero elements of $\mathrm{GF}\left(\mathbf{2}^{\wedge} \mathrm{m}\right)$. For more details on cyclotomic cosets, see the works listed in "References" on page 2-145.

The commands below find and display the cyclotomic cosets for GF(8). As an example of interpreting the results, $\mathrm{c}\{2\}$ indicates that $\mathrm{A}, \mathrm{A}^{2}$, and $\mathrm{A}^{2}+\mathrm{A}$ share the same minimal polynomial, where A is a primitive element for GF(8).

```
c = cosets(3);
c{1}'
c{2}'
c{3}'
```

The output is below.

```
ans = GF(2^3) array. Primitive polynomial = D^3+D+1 (11 decimal)
Array elements =
    1
ans = GF(2^3) array. Primitive polynomial = D^3+D+1 (11 decimal)
Array elements =
    2 4 6
```

```
ans = GF(2^3) array. Primitive polynomial = D^3+D+1 (11 decimal)
Array elements =
```

 \(\begin{array}{lll}3 & 5 & 7\end{array}\)

See Also
 minpol

References
[1] Blahut, Richard E., Theory and Practice of Error Control Codes, Reading, MA, Addison-Wesley, 1983, p. 105.
[2] Lin, Shu, and Daniel J. Costello, Jr., Error Control Coding: Fundamentals and Applications, Englewood Cliffs, NJ, Prentice-Hall, 1983.

crc.detector

Purpose	Construct CRC detector object
Syntax	$\mathrm{h}=$ crc.detector(polynomial)
	$\mathrm{h}=\mathrm{crc}$. detector (generatorObj)
	```h= crc.detector(`Polynomial', polynomial, `param1', val1, etc.)```
	$\mathrm{h}=\mathrm{crc}$. detector
Description	$\mathrm{h}=$ crc. detector(polynomial) constructs a CRC detector object H defined by the generator polynomial POLYNOMIAL
	$\mathrm{h}=\mathrm{crc}$. detector(generatorObj) constructs a CRC detector object H defined by the parameters found in the CRC generator object GENERATOROBJ
	$\mathrm{h}=$ crc.detector(`property1', val1, ...) constructs a CRC detector object H with properties as specified by PROPERTY/VALUE pairs.
	$\mathrm{h}=$ crc.detector constructs a CRC detector object H with default properties. It constructs a CRC-CCITT detector, and is equivalent to
	```h= crc.detector('Polynomial', '0x1021', 'InitialState',     'OxFFFF', 'ReflectInput', ...```
	false, 'ReflectRemainder', false, 'FinalXOR', '0x0000')
	Properties

The following table describes the properties of a CRC detector object. All properties are writable, except Type.

Property	Description
Type	Specifies the object as a 'CRC Detector'.

\(\left.$$
\begin{array}{l|l}\hline \text { Property } & \text { Description } \\
\hline \text { Polynomial } & \begin{array}{l}\text { The generator polynomial that } \\
\text { defines connections for a linear } \\
\text { feedback shift register. This } \\
\text { property can be specified as } \\
\text { a binary vector representing } \\
\text { descending powers of the } \\
\text { polynomial. In this case, the } \\
\text { leading '1' of the polynomial } \\
\text { must be included. It can also be } \\
\text { specified as a string, prefaced } \\
\text { by '0x', that is a hexadecimal } \\
\text { representation of the descending } \\
\text { powers of the polynomial. In } \\
\text { this case, the leading '1' of the } \\
\text { polynomial is omitted. }\end{array} \\
\hline \text { InitialState } & \begin{array}{l}\text { The initial contents of the } \\
\text { shift register. This property } \\
\text { can be specified as a binary } \\
\text { scalar, a binary vector, or as a } \\
\text { string, prefaced by '0x', that is a }\end{array}
$$

hexadecimal representation of the\end{array}\right\}\)| binary vector. As a binary vector, |
| :--- |
| its length must be one less than |
| the length of the binary vector |
| representation of the Polynomial. |

Property	Description
ReflectRemainder	A Boolean quantity that specifies whether the binary output CRC checksum should be flipped around its center after the input data is completely through the shift register.
FinalXOR	The value with which the CRC checksum is to be XORed just prior to being appended to the input data. This property can be specified as a binary scalar, a binary vector or as a string, prefaced by '0x', that is a hexadecimal representation of the binary vector. As a binary vector, its length must be one less than the length of the binary vector representation of the Polynomial.

A detect method is used with the object to detect errors in digital transmission.

CRC Generation Algorithm

For information pertaining to the CRC generation algorithm, refer to the Cyclic Redundancy Check Coding section of the Communications Toolbox ${ }^{\text {TM }}$ User's Guide.

Detector Method

[OUTDATA ERROR] = DETECT(H, INDATA) detects transmission errors in the encoded input message INDATA by regenerating a CRC checksum using the CRC detector object H. The detector then compares the regenerated checksum with the checksum appended to INDATA. The binary-valued INDATA can be either a column vector or a matrix. If it is a matrix, each column is considered to be a separate channel. OUTDATA is identical to the input message INDATA, except that it
has the CRC checksum stripped off. ERROR is a 1 xC logical vector indicating if the encoded message INDATA has errors, where C is the number of channels in INDATA. An ERROR value of 0 indicates no errors, and a value of 1 indicates errors.

Usage Examples

The following three examples demonstrate the use of constructing an object. The fourth example demonstrates use of the detect method.

```
% Construct a CRC detector with a polynomial
% defined by x^4+x^3+x^2+x+1:
h = crc.detector([[\begin{array}{lllll}{1}&{1}&{1}&{1}&{1}\end{array}])
% Construct a CRC detector with a polynomial
% defined by x^3+x+1, with
% zero initial states, and with an all-ones
% final XOR value:
h = crc.detector('Polynomial', [1 0 1 1], ...
'InitialState', [0 O 0], 'FinalXOR', [1 1 1 1])
% Construct a CRC detector with a polynomial
% defined by x^4+x^3+x^2+x+1,
% all-ones initial states, reflected input, and all-zeros
% final XOR value:
    h = crc.detector('Polynomial', 'OxF', 'InitialState', ...
    '0xF', 'ReflectInput', true, 'FinalXOR', '0xO')
% Create a CRC-16 CRC generator, then use it to generate
% a checksum for the
% binary vector represented by the
% ASCII sequence '123456789'.
% Introduce an error, then detect it
% using a CRC-16 CRC detector.
gen = crc.generator('Polynomial', '0x8005', 'ReflectInput', ...
true, 'ReflectRemainder', true);
det = crc.detector('Polynomial', '0x8005', 'ReflectInput', ...
true, 'ReflectRemainder', true);
% The message below is an ASCII representation
```


crc.detector

```
% of the digits 1-9
msg = reshape(de2bi(49:57, 8, 'left-msb')', 72, 1);
encoded = generate(gen, msg);
encoded(1) = ~encoded(1); % Introduce an error
[outdata error] = detect(det, encoded); % Detect the error
noErrors = isequal(msg, outdata) % Should be 0
error % Should be 1
```

See Also
crc.generator
Purpose Construct CRC generator object
Syntax

h = crc.generator (polynomial)
h = crc.generator(detectorObj)
h = crc.generator(`Polynomial', polynomial, `param1', val1,
etc.)
h = crc.generator

Description

$\mathrm{h}=\mathrm{crc}$. generator (polynomial) constructs a CRC generator object H defined by the generator polynomial POLYNOMIAL.
$\mathrm{h}=\mathrm{crc}$. generator(detectorObj) constructs a CRC generator object H defined by the parameters found in the CRC detector object DETECTOROBJ.
h = crc.generator(`property1', val1, ...) constructs a CRC generator object H with properties as specified by the PROPERTY/VALUE pairs.
$\mathrm{h}=\mathrm{crc}$. generator constructs a CRC generator object H with default properties. It constructs a CRC-CCITT generator, and is equivalent to: $\mathrm{h}=$ crc.generator('Polynomial', '0x1021', 'InitialState', '0xFFFF', ...
'ReflectInput', false, 'ReflectRemainder', false, 'FinalXOR', '0x0000').

Properties

The following table describes the properties of a CRC generator object. All properties are writable, except Polynomial.

Property	Description
Polynomial	The generator polynomial that defines connections for a linear feedback shift register. This property can be specified as a binary vector representing descending powers of the polynomial. In this case, the leading '1' of the polynomial must be included. It can also be specified as a string, prefaced by '0x', that is a hexadecimal representation of the descending powers of the polynomial. In this case, the leading '1' of the polynomial is omitted.
InitialState	The initial contents of the shift register. This property can be specified as a binary scalar, a binary vector, or as a string, prefaced by '0x', that is a hexadecimal representation of the binary vector. As a binary vector, its length must be one less than the length of the binary vector representation of the Polynomial.
ReflectInput	A Boolean quantity that specifies whether the input data should be
flipped on a bytewise basis prior	
to entering the shift register.	

Property	Description
ReflectRemainder	A Boolean quantity that specifies whether the binary output CRC checksum should be flipped around its center after the input data is completely through the shift register.
FinalXOR	The value with which the CRC checksum is to be XORed just prior to being appended to the input data. This property can be specified as a binary scalar, a binary vector, or as a string, prefaced by '0x', that is a hexadecimal representation of the binary vector. As a binary vector, its length must be one less than
the length of the binary vector	
representation of the Polynomial.	

CRC Generation Algorithm

For information pertaining to the CRC generation algorithm, refer to the Cyclic Redundancy Check Coding section of the Communications Toolbox User's Guide.

Generator Method

encoded = generate(h, msg) generates a CRC checksum for an input message using the CRC generator object H. It appends the checksum to the end of MSG. The binary-valued MSG can be either a column vector or a matrix. If it is a matrix, then each column is considered to be a separate channel.

Usage Example

The following examples demonstrate the use of this object.

```
% Construct a CRC generator with a polynomial defined
% by x^4+x^3+x^2+x+1:
h = crc.generator([[1 1
% Construct a CRC generator with a polynomial defined
% by x^3+x+1, with zero initial states,
% and with an all-ones final XOR value:
h = crc.generator('Polynomial', [11 0 1 1], ...
    'InitialState', [0 0 0], ...
    'FinalXOR', [11 1 1])
% Construct a CRC generator with a polynomial defined
% by x^4+x^3+x^2+x+1, all-ones initial states, reflected
% input, and all-zeros final XOR value:
h = crc.generator('Polynomial', '0xF', 'InitialState', ...
'0xF', 'ReflectInput', true, 'FinalXOR', 'Ox0')
% Create a CRC-16 CRC generator, then use it to generate
% a checksum for the
% binary vector represented by the ASCII sequence '123456789'.
gen = crc.generator('Polynomial', '0x8005', ...
'ReflectInput', true, 'ReflectRemainder', true);
% The message below is an ASCII representation of ...
% the digits 1-9
msg = reshape(de2bi(49:57, 8, 'left-msb')', 72, 1);
encoded = generate(gen, msg);
```


Purpose

Produce parity-check and generator matrices for cyclic code
Syntax
$\mathrm{h}=\operatorname{cyclgen}(\mathrm{n}, \mathrm{pol})$
$\mathrm{h}=\operatorname{cyclgen}(\mathrm{n}, \mathrm{pol}, \mathrm{opt})$
$[\mathrm{h}, \mathrm{g}]=\operatorname{cyclgen}(\ldots)$
$[\mathrm{h}, \mathrm{g}, \mathrm{k}]=\operatorname{cyclgen}(. .$.

Description

Examples

For all syntaxes, the codeword length is n and the message length is k. A polynomial can generate a cyclic code with codeword length n and message length k if and only if the polynomial is a degree-($n-k$) divisor of $x^{\wedge} n-1$. (Over the binary field GF(2), $x^{\wedge} n-1$ is the same as $x^{\wedge} n+1$.) This implies that k equals n minus the degree of the generator polynomial.
$h=\operatorname{cyclgen}(n, p o l)$ produces an ($n-k$)-by-n parity-check matrix for a systematic binary cyclic code having codeword length n. The row vector pol gives the binary coefficients, in order of ascending powers, of the degree-($n-k$) generator polynomial.
$h=\operatorname{cyclgen}(\mathrm{n}, \mathrm{pol}, o p t)$ is the same as the syntax above, except that the argument opt determines whether the matrix should be associated with a systematic or nonsystematic code. The values for opt are 'system' and 'nonsys'.
$[\mathrm{h}, \mathrm{g}]=\operatorname{cyclgen}(\ldots)$ is the same as $\mathrm{h}=\operatorname{cyclgen}(\ldots)$, except that it also produces the k-by-n generator matrix g that corresponds to the parity-check matrix h.
$[h, g, k]=\operatorname{cyclgen}(\ldots)$ is the same as $[h, g]=\operatorname{cyclgen}(\ldots)$, except that it also returns the message length k.

The code below produces parity-check and generator matrices for a binary cyclic code with codeword length 7 and message length 4.

```
pol = cyclpoly(7,4);
[parmat,genmat,k] = cyclgen(7,pol)
```

The output is
parmat $=$

1	0	0	1	1	1	0
0	1	0	0	1	1	1
0	0	1	1	1	0	1

genmat =

1	0	1	1	0	0	0
1	1	1	0	1	0	0
1	1	0	0	0	1	0
0	1	1	0	0	0	1

4

In the output below, notice that the parity-check matrix is different from parmat above, because it corresponds to a nonsystematic cyclic code. In particular, parmatn does not have a 3-by-3 identity matrix in its leftmost three columns, as parmat does

```
parmatn = cyclgen(7,cyclpoly(7,4),'nonsys')
parmatn =
```

1	1	1	0	1	0	0
0	1	1	1	0	1	0
0	0	1	1	1	0	1

encode, decode, bchgenpoly, cyclpoly, "Block Coding"

Purpose

Produce generator polynomials for cyclic code
Syntax

```
pol = cyclpoly(n,k)
pol = cyclpoly(n,k,opt)
```

Description
For all syntaxes, a polynomial is represented as a row containing the coefficients in order of ascending powers.
pol $=$ cyclpoly (n, k) returns the row vector representing one nontrivial generator polynomial for a cyclic code having codeword length n and message length k .
pol = cyclpoly($\mathrm{n}, \mathrm{k}, \mathrm{opt}$) searches for one or more nontrivial generator polynomials for cyclic codes having codeword length n and message length k. The output pol depends on the argument opt as shown in the table below.

opt	Significance of pol	Format of pol
'min'	One generator polynomial having the smallest possible weight	Row vector representing the polynomial
'max'	One generator polynomial having the greatest possible weight	Row vector representing the polynomial
'all'	All generator polynomials M	Matrix, each row of which represents one such polynomial
a positive integer, L	All generator polynomials having weight L	Matrix, each row of which represents one such polynomial

The weight of a binary polynomial is the number of nonzero terms it has. If no generator polynomial satisfies the given conditions, the output pol is empty and a warning message is displayed.

Examples

The first command below produces representations of three generator polynomials for a $[15,4]$ cyclic code. The second command shows that $1+x+x^{2}+x^{3}+x^{5}+x^{7}+x^{8}+x^{11}$ is one such polynomial having the largest number of nonzero terms.

```
c1 = cyclpoly(15,4,'all')
c2 = cyclpoly(15,4,'max')
```

The output is

```
c1 =
```

Columns 1 through 10

0 1

This command shows that no generator polynomial for a [15, 4] cyclic code has exactly three nonzero terms.

```
c3 = cyclpoly(15,4,3)
No generator polynomial satisfies the given constraints.
c3 =
```

[]

Algorithm

If opt is 'min', 'max', or omitted, polynomials are constructed by converting decimal integers to base p. Based on the decimal ordering, gfprimfd returns the first polynomial it finds that satisfies the appropriate conditions. This algorithm is similar to the one used in gfprimfd.
cyclgen, encode, "Block Coding"

Purpose Convert decimal numbers to binary vectors

Syntax
\section*{Description}

b = de2bi(d)
b = de2bi(d,n)
b = de2bi(d,n,p)
b = de2bi(d,[],p)
b $=\operatorname{de2bi}(d, \ldots, f l g)$
b = de2bi(d) converts a nonnegative decimal integer d to a binary row vector. If d is a vector, the output b is a matrix, each row of which is the binary form of the corresponding element in d. If d is a matrix, de2bi treats it like the vector $d(:)$.

Note By default, de2bi uses the first column of b as the lowest-order digit.
$b=\operatorname{de2bi}(d, n)$ is the same as $b=d e 2 b i(d)$, except that its output has n columns, where n is a positive integer. An error occurs if the binary representations would require more than n digits. If necessary, the binary representation of d is padded with extra zeros.
$b=d e 2 b i(d, n, p)$ converts a nonnegative decimal integer d to a base-p row vector, where p is an integer greater than or equal to 2 . The first column of b is the lowest base-p digit. b is padded with extra zeros if necessary, so that it has n columns, where n is a positive integer. An error occurs if the base-p representations would require more than n digits. If d is a nonnegative decimal vector, the output b is a matrix, each row of which is the (possibly zero-padded) base-p form of the corresponding element in d . If d is a matrix, de2bi treats it like the vector d(:).
$b=d e 2 b i(d,[], p)$ specifies the base p but not the number of columns.
$\mathrm{b}=\mathrm{de} 2 \mathrm{bi}(\mathrm{d}, \ldots, f l g)$ uses the string $f l g$ to determine whether the first column of b contains the lowest-order or highest-order
digits. Values for $f l g$ are 'right-msb' and 'left-msb'. The value 'right-msb' produces the default behavior.

Examples

The code below counts to 10 in decimal and binary.

```
d = (1:10)';
b = de2bi(d);
disp(' Dec Binary ')
disp(' ----- -----------------'')
disp([d, b])
```

The output is below.

Dec		Binary		
1	1	0	0	0
2	0	1	0	0
3	1	1	0	0
4	0	0	1	0
5	1	0	1	0
6	0	1	1	0
7	1	1	1	0
8	0	0	0	1
9	1	0	0	1
10	0	1	0	1

The command below shows how de2bi pads its output with zeros.

```
bb = de2bi([3 9],5) % Zero-padding the output
bb =
```

1	1	0	0	0
1	0	0	1	0

The commands below show how to convert a decimal integer to base three without specifying the number of columns in the output matrix.

They also show how to place the most significant digit on the left instead of on the right.

```
t = de2bi(12,[],3) % Convert 12 to base 3.
tleft = de2bi(12,[],3,'left-msb') % Significant digit on left
```

The output is

$$
t=
$$

$\begin{array}{lll}0 & 1 & 1\end{array}$
tleft =
$1 \quad 1 \quad 0$
See Also bi2de

Purpose
Block decoder
Syntax

```
msg = decode(code,n,k,'hamming/fmt',prim_poly)
msg = decode(code,n,k,'linear/fmt',genmat,trt)
msg = decode(code,n,k,'cyclic/fmt',genpoly,trt)
msg = decode(code,n,k)
[msg,err] = decode(...)
[msg,err,ccode] = decode(...)
[msg,err,ccode,cerr] = decode(...)
```


Optional
 Inputs

Input	Default Value
fmt	binary
prim_poly	gfprimdf(m) where $\mathrm{n}=2^{\wedge} \mathrm{m}-1$
genpoly	cyclpoly (n, k)
trt	Uses syndtable to create the syndrome decoding table associated with the method’s parity-check matrix

Description

For All Syntaxes

The decode function aims to recover messages that were encoded using an error-correction coding technique. The technique and the defining parameters must match those that were used to encode the original signal.

The "For All Syntaxes" on page 2-211 section on the encode reference page explains the meanings of n and k, the possible values of $f m t$, and the possible formats for code and msg. You should be familiar with the conventions described there before reading the rest of this section. Using the decode function with an input argument code that was not created by the encode function might cause errors.

For Specific Syntaxes

$m s g=$ decode(code, n, k, 'hamming/fmt', prim_poly) decodes code using the Hamming method. For this syntax, n must have the form $2^{\mathrm{m}}-1$ for some integer m greater than or equal to 3 , and k must equal $n-m$. prim_poly is a row vector that gives the binary coefficients, in order of ascending powers, of the primitive polynomial for GF $\left(2^{m}\right)$ that is used in the encoding process. The default value of prim_poly is gfprimdf (m). The decoding table that the function uses to correct a single error in each codeword is syndtable(hammgen(m)).
$m s g=$ decode (code, n, k, 'linear/fmt', genmat, trt) decodes code, which is a linear block code determined by the k-by-n generator matrix genmat. genmat is required as input. decode tries to correct errors using the decoding table trt, where trt is a $2^{\wedge}(n-k)$-by-n matrix.
$m s g=$ decode (code, n, k, 'cyclic/fmt', genpoly, trt) decodes the cyclic code code and tries to correct errors using the decoding table trt, where trt is a $2^{\wedge}(n-k)$-by-n matrix. genpoly is a row vector that gives the coefficients, in order of ascending powers, of the binary generator polynomial of the code. The default value of genpoly is cyclpoly (n, k). By definition, the generator polynomial for an [n, k] cyclic code must have degree $\mathrm{n}-\mathrm{k}$ and must divide $\mathrm{x}^{\mathrm{n}}-1$.

```
msg = decode(code, n,k) is the same as
msg = decode(code,n,k,'hamming/binary').
```

[msg,err] = decode(...) returns a column vector err that gives information about error correction. If the code is a convolutional code, err contains the metric calculations used in the decoding decision process. For other types of codes, a nonnegative integer in the rth row of err indicates the number of errors corrected in the rth message word; a negative integer indicates that there are more errors in the rth word than can be corrected.
[msg,err,ccode] = decode(...) returns the corrected code in ccode.
[msg,err,ccode,cerr] = decode(...) returns a column vector cerr whose meaning depends on the format of code:

- If code is a binary vector, a nonnegative integer in the rth row of vec2matcerr indicates the number of errors corrected in the rth codeword; a negative integer indicates that there are more errors in the rth codeword than can be corrected.
- If code is not a binary vector, cerr = err.

Examples

On the reference page for encode, some of the example code illustrates the use of the decode function.

The example below illustrates the use of err and cerr when the coding method is not convolutional code and the code is a binary vector. The script encodes two five-bit messages using a cyclic code. Each codeword has 15 bits. Errors are added to the first two bits of the first codeword and the first bit of the second codeword. Then decode is used to recover the original message. As a result, the errors are corrected. err reflects the fact that the first message was recovered after correcting two errors, while the second message was recovered after correcting one error. cerr reflects the fact that the first codeword was decoded after correcting two errors, while the second codeword was decoded after correcting one error.

```
m = 4; n = 2^m-1; % Codeword length is 15.
k = 5; % Message length
msg = ones(10,1); % Two messages, five bits each
code = encode(msg,n,k,'cyclic'); % Encode the message.
% Now place two errors in first word and one error
% in the second word. Create errors by reversing bits.
noisycode = code;
noisycode(1:2) = bitxor(noisycode(1:2),[1 1]');
noisycode(16) = bitxor(noisycode(16),1);
% Decode and try to correct the errors.
[newmsg,err,ccode,cerr] = decode(noisycode,n,k,'cyclic');
disp('Transpose of err is'); disp(err')
disp('Transpose of cerr is'); disp(cerr')
```

The output is below.

decode

```
Single-error patterns loaded in decoding table.
    1008 rows remaining.
2-error patterns loaded. }918\mathrm{ rows remaining.
3-error patterns loaded. }648\mathrm{ rows remaining.
4-error patterns loaded. }243\mathrm{ rows remaining.
5-error patterns loaded. 0 rows remaining.
Transpose of err is
    2 1
Transpose of cerr is
    2 1
```


Algorithm Depending on the decoding method, decode relies on such lower-level functions as hammgen, syndtable, and cyclgen.

See Also
encode, cyclpoly, syndtable, gen2par, "Block Coding"

Purpose Restore ordering of symbols

```
Syntax
deintrlvd = deintrlv(data,elements)
```

Description
deintrlvd = deintrlv(data, elements) restores the original ordering of the elements of data by acting as an inverse of intrlv. If data is a length- N vector or an N-row matrix, elements is a length- N vector that permutes the integers from 1 to N . To use this function as an inverse of the intrlv function, use the same elements input in both functions. In that case, the two functions are inverses in the sense that applying intrlv followed by deintrlv leaves data unchanged.

Examples

The code below illustrates the inverse relationship between intrlv and deintrlv.

```
p = randperm(10); % Permutation vector
a = intrlv(10:10:100,p); % Rearrange [10 20 30 ... 100].
b = deintrlv(a,p) % Deinterleave a to restore ordering.
```

The output is
$\mathrm{b}=$
$\begin{array}{llllllllll}10 & 20 & 30 & 40 & 50 & 60 & 70 & 80 & 90 & 100\end{array}$
See Also intrlv, "Interleaving"

Purpose	Construct decision-feedback equalizer object
Syntax	eqobj$=d f e(n f w d w e i g h t s, n f b k w e i g h t s$, alg $)$
eqobj $=d f e(n f w d w e i g h t s, n f b k w e i g h t s, a l g$, sigconst $)$	
eqobj $=d f e(n f w d w e i g h t s, n f b k w e i g h t s, a l g$, sigconst, $n s a m p)$	

Description

The dfe function creates an equalizer object that you can use with the equalize function to equalize a signal. To learn more about the process for equalizing a signal, see "Using Adaptive Equalizer Functions and Objects".
eqobj = dfe(nfwdweights, nfbkweights,alg) constructs a decision feedback equalizer object. The equalizer's feedforward and feedback filters have nfwdweights and nfbkweights symbol-spaced complex weights, respectively, which are initially all zeros. alg describes the adaptive algorithm that the equalizer uses; you should create alg using any of these functions: lms, signlms, normlms, varlms, rls, or cma. The signal constellation of the desired output is [-1 1], which corresponds to binary phase shift keying (BPSK).
eqobj = dfe(nfwdweights, nfbkweights,alg,sigconst) specifies the signal constellation vector of the desired output.
eqobj = dfe(nfwdweights, nfbkweights,alg,sigconst,nsamp) constructs a DFE with a fractionally spaced forward filter. The forward filter has nfwdweights complex weights spaced at T/nsamp, where T is the symbol period and nsamp is a positive integer. nsamp $=1$ corresponds to a symbol-spaced forward filter.

Properties

The table below describes the properties of the decision feedback equalizer object. To learn how to view or change the values of a decision feedback equalizer object, see "Accessing Properties of an Equalizer".

Note To initialize or reset the equalizer object eqobj, enter reset(eqobj).

Property	Description
EqType	Fixed value, 'Decision Feedback Equalizer'
AlgType	Name of the adaptive algorithm represented by alg
nWeights	Number of weights in the forward filter and the feedback filter, in the format [nfwdweights, nfbkweights]. The number of weights in the forward filter must be at least 1.
nSampPerSym	Number of input samples per symbol (equivalent to nsamp input argument). This value relates to both the equalizer structure (see the use of K in "Decision-Feedback Equalizers") and an assumption about the signal to be equalized.
RefTap (except for CMA	Reference tap index, between 1 and nfwdweights. Setting this to a value greater than 1 effectively delays the reference signal with respect to the equalizer's input signal.
SigConst	Signal constellation, a vector whose length is typically a power of 2.

Property	Description
Weights	Vector that concatenates the complex coefficients from the forward filter and the feedback filter. This is the set of w_{i} values in the schematic in "Decision-Feedback Equalizers".
Weight Inputs	Vector that concatenates the tap weight inputs for the forward filter and the feedback filter. This is the set of u_{i} values in the schematic in "Decision-Feedback Equalizers".
ResetBeforeFiltering	If 1, each call to equalize resets the state of eqobj before equalizing. If 0, the equalization process maintains continuity from one call to the next.
NumSamplesProcessed	Number of samples the equalizer processed since the last reset. When you create or reset eqobj, this property value is 0.
Properties specific to the adaptive	See reference page for the adaptive algorithm function that created alg: lms, signlms, algorithm represented by alg

Relationships Among Properties

If you change nWeights, MATLAB maintains consistency in the equalizer object by adjusting the values of the properties listed below.

Property	Adjusted Value
Weights	$\operatorname{zeros}(1$, sum (nWeights))

Property	Adjusted Value
WeightInputs	zeros(1, sum(nWeights))
StepSize (Variable-step-size LMS equalizers)	InitStep*ones(1, sum(nWeights))
InvCorrMatrix (RLS equalizers)	InvCorrInit*eye(sum(nWeights))

An example illustrating relationships among properties is in "Linked Properties of an Equalizer Object".

Examples

An example is in "Defining an Equalizer Object".
See Also
lms, signlms, normlms, varlms, rls, cma, lineareq, equalize, "Equalizers"

$$
\begin{array}{ll}
\text { Purpose } & \text { Discrete Fourier transform matrix in Galois field } \\
\text { Syntax } & \text { dm = dftmtx (alph) } \\
\text { Description } & \begin{array}{l}
\text { dm }=\operatorname{dftmtx}(\text { alph }) \text { returns a Galois array that represents the discrete } \\
\text { Fourier transform operation on a Galois vector, with respect to the } \\
\text { Galois scalar alph. The element alph is a primitive nth root of unity } \\
\text { in the Galois field } G F\left(2^{m}\right)=G F(n+1) \text {; that is, } n \text { must be the smallest } \\
\text { positive value of } k \text { for which alph^ } \text { equals } 1 . \text { The discrete Fourier } \\
\text { transform has size } n \text { and dm is an } n \text {-by-n array. The array dm represents } \\
\text { the transform in the sense that dm times any length-n Galois column } \\
\text { vector yields the transform of that vector. }
\end{array}
\end{array}
$$

Note The inverse discrete Fourier transform matrix is dftmtx(1/alph).

Examples The example below illustrates the discrete Fourier transform and its inverse, with respect to the element $g f(3,4)$. The example examines the first n powers of that element to make sure that only the nth power equals one. Afterward, the example transforms a random Galois vector, undoes the transform, and checks the result.

```
m = 4;
n = 2^m-1;
a = 3;
alph = gf(a,m);
mp = minpol(alph);
if (mp(1)==1 && isprimitive(mp)) % Check that alph has order n.
    disp('alph is a primitive nth root of unity.')
    dm = dftmtx(alph);
    idm = dftmtx(1/alph);
    x = gf(randint(n,1,2^m),m);
    y = dm*x; % Transform x.
    z = idm*y; % Recover x.
    ck = isequal(x,z)
```

end

The output is

```
alph is a primitive nth root of unity.
ck =
```

1

Limitations

See Also

Algorithm The element $d m(a, b)$ equals alph^((a-1)* $(b-1))$.
The Galois field over which this function works must have 256 or fewer elements. In other words, alph must be a primitive nth root of unity in the Galois field $\mathrm{GF}\left(2^{\mathrm{m}}\right)$, where m is an integer between 1 and 8 .
fft, ifft, "Signal Processing Operations in Galois Fields"

distspec

Purpose Compute distance spectrum of convolutional code

```
Syntax spect = distspec(trellis,n)
spect = distspec(trellis)
```

Description spect $=$ distspec(trellis, n) computes the free distance and the first n components of the weight and distance spectra of a linear convolutional code. Because convolutional codes do not have block boundaries, the weight spectrum and distance spectrum are semi-infinite and are most often approximated by the first few components. The input trellis is a valid MATLAB trellis structure, as described in "Trellis Description of a Convolutional Encoder". The output, spect, is a structure with these fields:

Field	Meaning
spect.dfree	Free distance of the code. This is the minimum number of errors in the encoded sequence required to create an error event.
spect.weight	A length-n vector that lists the total number of information bit errors in the error events enumerated in spect.event.
spect.event	A length-n vector that lists the number of error events for each distance between spect. dfree and spect.dfree $n-1$. The vector represents the first n components of the distance spectrum.

spect $=$ distspec(trellis) is the same as spect $=$ distspec(trellis,1).

Examples The example below performs these tasks:

- Computes the distance spectrum for the rate $2 / 3$ convolutional code that is depicted on the reference page for the poly2trellis function
- Uses the output of distspec as an input to the bercoding function, to find a theoretical upper bound on the bit error rate for a system that uses this code with coherent BPSK modulation
- Plots the upper bound using the berfit function

```
trellis = poly2trellis([5 4],[23 35 0; 0 5 13])
spect = distspec(trellis,4)
berub = bercoding(1:10,'conv','hard',2/3,spect); % BER bound
berfit(1:10,berub); ylabel('Upper Bound on BER'); % Plot.
```

The output and plot are below.

```
trellis =
    numInputSymbols: 4
    numOutputSymbols: 8
            numStates: 128
spect =
    dfree: 5
    weight: [1 6 28 142]
    event: [1 2 8 25]
```

 nextStates: [128x4 double]
 outputs: [128x4 double]

Algorithm

References

The function uses a tree search algorithm implemented with a stack, as described in [2].
[1] Bocharova, I. E., and B. D. Kudryashov, "Rational Rate Punctured Convolutional Codes for Soft-Decision Viterbi Decoding," IEEE Transactions on Information Theory, Vol. 43, No. 4, July 1997, pp. 1305-1313.
[2] Cedervall, M., and R. Johannesson, "A Fast Algorithm for Computing Distance Spectrum of Convolutional Codes," IEEE Transactions on Information Theory, Vol. 35, No. 6, Nov. 1989, pp. 1146-1159.
[3] Chang, J., D. Hwang, and M. Lin, "Some Extended Results on the Search for Good Convolutional Codes," IEEE Transactions on Information Theory, Vol. 43, No. 5, Sep. 1997, pp. 1682-1697.
[4] Frenger, P., P. Orten, and T. Ottosson, "Comments and Additions to Recent Papers on New Convolutional Codes," IEEE Transactions on Information Theory, Vol. 47, No. 3, March 2001, pp. 1199-1201.

See Also bercoding, iscatastrophic, istrellis, and poly2trellis

doppler

Purpose Package of Doppler classes
Description This package contains the classes that instantiate Doppler objects. These objects are used as values of the DopplerSpectrum property, which is common to both Rayleigh and Rician channel objects.

Properties and
 Methods

Every Doppler object has a read-only SpectrumType property. Other properties are specific to each Doppler class.

Every Doppler object has a copy method, to duplicate itself, and a disp method, to display its properties.

See Also doppler.ajakes, doppler.bell, doppler.bigaussian, doppler.flat, doppler.gaussian, doppler.jakes, doppler.rjakes, doppler. rounded, "Fading Channels", rayleighchan, ricianchan, and stdchan

Purpose

Construct asymmetrical Doppler spectrum object

Syntax

Description

```
dop = doppler.ajakes(freqminmaxajakes)
```

dop $=$ doppler.ajakes

The doppler.ajakes function creates an asymmetrical Jakes (AJakes) Doppler spectrum object. This object is to be used for the DopplerSpectrum property of a channel object created with the rayleighchan or the ricianchan functions.
dop = doppler.ajakes(freqminmaxajakes), where freqminmaxajakes is a row vector of two finite real numbers between -1 and 1 , creates a Jakes Doppler spectrum that is nonzero only for normalized (by the maximum Doppler shift f_{d}, in Hz) frequencies $f_{\text {norm }}$ such that $-1 \leq f_{\text {min,norm }} \leq f_{\text {norm }} \leq f_{\text {max, norm }} \leq 1$, where $f_{\text {min,norm }}$ is given by freqminmaxajakes(1) and $f_{\text {max,norm }}$ is given by freqminmaxajakes(2). The maximum Doppler shift f_{d} is specified by the MaxDopplerShift property of the channel object. Analytically: $f_{\text {min,norm }}=f_{\text {min }} / f_{d}$ and $f_{\text {max, norm }}=f_{\max } / f_{d}$, where $f_{\min }$ is the minimum Doppler shift (in hertz) and $f_{\text {max }}$ is the maximum Doppler shift (in hertz).
When dop is used as the DopplerSpectrum property of a channel object, space freqminmaxajakes(1) and freqminmaxajakes(2) by more than $1 / 50$. Assigning a smaller spacing results in freqminmaxarjakes being reset to the default value of $\left[\begin{array}{ll}0 & 1\end{array}\right]$.
dop = doppler.ajakes creates an asymmetrical Doppler spectrum object with a default freqminmaxajakes $=\left[\begin{array}{ll}0 & 1\end{array}\right]$. This syntax is equivalent to constructing a Jakes Doppler spectrum that is nonzero only for positive frequencies.

doppler.ajakes

Properties
The AJakes Doppler spectrum object contains the following properties.

Property	Description
SpectrumType	Fixed value, 'AJakes '
FreqMinMaxAJakes	Vector of minimum and maximum normalized Doppler shifts, two real finite numbers between -1 and 1

Theory and
Applications

The Jakes power spectrum is based on the assumption that the angles of arrival at the mobile receiver are uniformly distributed [1]: the
spectrum then covers the frequency range from $-f_{d}$ to f_{d}, f_{d} being the maximum Doppler shift. When the angles of arrival are not uniformly distributed, then the Jakes power spectrum does not cover
the full Doppler bandwidth from $-f_{d}$ to f_{d}. The AJakes Doppler spectrum object covers the case of a power spectrum that is nonzero
only for frequencies f such that $-f_{d} \leq f_{\min } \leq f \leq f_{\max } \leq f_{d}$. It is an asymmetrical spectrum in the general case, but becomes a symmetrical
spectrum if $f_{\text {min }}=-f_{\text {max }}$.
The normalized AJakes Doppler power spectrum is given analytically by:

$$
\begin{aligned}
S(f) & =\frac{A_{a}}{\pi f_{d} \sqrt{1-\left(f / f_{d}\right)^{2}}},-f_{d} \leq f_{\min } \leq f \leq f_{\max } \leq f_{d} \\
A_{a} & =\frac{1}{\frac{1}{\pi}\left[\sin ^{-1}\left(\frac{f_{\max }}{f_{d}}\right)-\sin ^{-1}\left(\frac{f_{\min }}{f_{d}}\right)\right]}
\end{aligned}
$$

doppler.ajakes

where $f_{\text {min }}$ and $f_{\text {max }}$ denote the minimum and maximum frequencies where the spectrum is nonzero. You can determine these values from the probability density function of the angles of arrival.

Examples

```
chan = rayleighchan(1/1000, 10);
dop_ajakes = doppler.ajakes([-0.2 0.05]);
chan.DopplerSpectrum = dop_ajakes;
chan.DopplerSpectrum
```

This code returns:
SpectrumType: 'AJakes' FreqMinMaxAJakes: [-0.2000 0.0500]

References

[1] Jakes, W. C., Ed., Microwave Mobile Communications, Wiley, 1974.
[2] Lee, W. C. Y., Mobile Communications Engineering: Theory and Applications, 2nd Ed., McGraw-Hill, 1998.
[3] Pätzold, M., Mobile Fading Channels, Wiley, 2002.
See Also doppler, doppler.bell, doppler.bigaussian, doppler.flat, doppler.gaussian, doppler.jakes, doppler.rjakes,
doppler. rounded, rayleighchan, ricianchan, stdchan, and "Fading Channels"

doppler.bell

Purpose Construct bell-shaped Doppler spectrum object

Syntax doppler.bell

doppler.bell(coeffbell)

Description

doppler.bell creates a bell Doppler spectrum object. You can use this object with the DopplerSpectrum property of any channel object created with either the rayleighchan function, the ricianchan function, or the mimochan function.
dop = doppler. bell creates a bell Doppler spectrum object with default coefficient.
dop $=$ doppler. bell (coeffbell) creates a bell Doppler spectrum object with coefficient given by coeffbell, where coeffbell is a positive, finite, real scalar.

Properties

The bell Doppler spectrum object has the following properties.

Property	Description
SpectrumType	Fixed value, 'Bell'
CoeffBell	Bell spectrum coefficient, positive real finite scalar.

Theory and Applications

A bell spectrum was proposed in [1] for the Doppler spectrum of indoor MIMO channels, for 802.11 n channel modeling.

The normalized bell Doppler spectrum is given analytically by:

$$
S(f)=\frac{C_{b}}{1+A\left(\frac{f}{f_{d}}\right)^{2}}
$$

where

doppler.bell

$$
|f| \leq f_{d}
$$

and

$$
C_{b}=\frac{\sqrt{A}}{\pi f_{d}}
$$

f_{d} represents the maximum Doppler shift specified for the channel object, and A represents a positive real finite scalar (CoeffBell). The indoor MIMO channel model of IEEE 802.11n [1] uses the following parameter: $A=9$. Since the channel is modeled as Rician fading with a fixed line-of-sight (LOS) component, a Dirac delta is also present in the Doppler spectrum at $f=0$.

References

See Also
[1] IEEE P802.11 Wireless LANs, "TGn Channel Models", IEEE 802.1103/940r4, 2004-05-10.
doppler, doppler.ajakes, doppler.flat, doppler.gaussian, doppler.jakes, doppler.rjakes, doppler. rounded, rayleighchan, ricianchan, stdchan, and "Fading Channels"

Purpose
Syntax

Description

Construct bi-Gaussian Doppler spectrum object

```
dop = doppler.bigaussian(property1,value1,...)
dop = doppler.bigaussian
```

The doppler.bigaussian function creates a bi-Gaussian Doppler spectrum object to be used for the DopplerSpectrum property of a channel object (created with either the rayleighchan function or the ricianchan function).
dop = doppler.bigaussian(property1,value1,...) creates a bi-Gaussian Doppler spectrum object with properties as specified by the property/value pairs. If you do not specify a value for a property, the property is assigned a default value.
dop $=$ doppler.bigaussian creates a bi-Gaussian Doppler spectrum object with default properties. The constructed Doppler spectrum object is equivalent to a single Gaussian Doppler spectrum centered at zero frequency. The equivalent command with property/value pairs is:

```
dop = doppler.bigaussian(`SigmaGaussian1', 1/sqrt(2),
    `SigmaGaussian2', 1/sqrt(2),
    `CenterFrequencyGaussian1', 0,
    `CenterFrequencyGaussian2', 0,
    `GainGaussian1', 0.5,
    `GainGaussian2', 0.5)
```


Properties

The bi-Gaussian Doppler spectrum object contains the following properties.

Property	Description
SpectrumType	Fixed value, 'BiGaussian '
SigmaGaussian1	Normalized standard deviation of first Gaussian function (real positive finite scalar value)

doppler.bigaussian

Property	Description
SigmaGaussian2	Normalized standard deviation of second Gaussian function (real positive finite scalar value)
CenterFreqGaussian1	Normalized center frequency of first Gaussian function (real scalar value between -1 and 1)
CenterFreqGaussian2	Normalized center frequency of second Gaussian function (real scalar value between -1 and 1)
GainGaussian1	Power gain of first Gaussian function (linear scale, real nonnegative finite scalar value)
GainGaussian2	Power gain of second Gaussian function (linear scale, real nonnegative finite scalar value)

All properties are writable except for the SpectrumType property.
The properties SigmaGaussian1, SigmaGaussian2, GainGaussian1, and GainGaussian2 are normalized by the MaxDopplerShift property of the associated channel object.
Analytically, the normalized standard deviations of the first and second Gaussian functions are determined as $\sigma_{G 1, \text { norm }}=\sigma_{G 1} / f_{d}$ and $\sigma_{G 2, \text { norm }}=\sigma_{G 2} / f_{d}$, respectively, where $\sigma_{G 1}$ and $\sigma_{G 2}$ are the standard deviations of the first and second Gaussian functions, and
f_{d} is the maximum Doppler shift, in hertz. Similarly, the normalized center frequencies of the first and second Gaussian functions are determined as $f_{G 1, \text { norm }}=f_{G 1} / f_{d}$ and $f_{G 2, \text { norm }}=f_{G 2} / f_{d}$, respectively, where $f_{G 1}$ and $f_{G 2}$ are the center frequencies of the first and second Gaussian functions. The properties GainGaussian1 and GainGaussian2

doppler.bigaussian

Theory and
 Applications

correspond to the power gains $C_{G 1}$ and $C_{G 2}$, respectively, of the two Gaussian functions.

The bi-Gaussian power spectrum consists of two frequency-shifted Gaussian spectra. The COST207 channel models ([1], [2], [3]) specify two distinct bi-Gaussian Doppler spectra, GAUS1 and GAUS2, to be used in modeling long echos for urban and hilly terrain profiles.

The normalized bi-Gaussian Doppler spectrum is given analytically by:

$$
S_{G}(f)=A_{G}\left[\frac{C_{G 1}}{\sqrt{2 \pi \sigma_{G 1}^{2}}} \exp \left(-\frac{\left(f-f_{G 1}\right)^{2}}{2 \sigma_{G 1}^{2}}\right)+\frac{C_{G, 2}}{\sqrt{2 \pi \sigma_{G 2}^{2}}} \exp \left(-\frac{\left(f-f_{G 2}\right)^{2}}{2 \sigma_{G 2}^{2}}\right)\right]
$$

where $\sigma_{G 1}$ and $\sigma_{G 2}$ are standard deviations, $f_{G 1}$ and $f_{G 2}$ are center
frequencies, $C_{G 1}$ and $C_{G 2}$ are power gains, and $A_{G}=\frac{1}{C_{G 1}+C_{G 2}}$ is a
normalization coefficient.
If either $f_{G 1}=0$ or $f_{G 2}=0$, a frequency-shifted Gaussian Doppler spectrum is obtained.

Examples

The following MATLAB code first creates a bi-Gaussian Doppler spectrum object with the same parameters as that of a COST 207 GAUS2 Doppler spectrum. It then creates a Rayleigh channel object
with a maximum Doppler shift of $f_{d}=30$ and assigns the constructed Doppler spectrum object to its DopplerSpectrum property.

```
dop_bigaussian = doppler.bigaussian(`SigmaGaussian1', 0.1, ...
    `SigmaGaussian2', 0.15, `CenterFreqGaussian1', 0.7, ...
    `CenterFreqGaussian2', -0.4, `GainGaussian1', 1, ...
    `GainGaussian2', 1/10^1.5)
chan = rayleighchan(1e-3, 30);
chan.DopplerSpectrum = dop_bigaussian;
```


doppler.bigaussian

References
[1] COST 207 WG1, Proposal on channel transfer functions to be used in GSM tests late 1986, COST 207 TD (86) 51 Rev. 3, Sept. 1986.
[2] COST 207, Digital land mobile radio communications, Office for Official Publications of the European Communities, Final report, Luxembourg, 1989.
[3] Pätzold, M., Mobile Fading Channels, Wiley, 2002.
See Also $\begin{aligned} & \text { doppler, doppler.ajakes, doppler.bell, doppler.flat, } \\ & \text { doppler.gaussian, doppler.jakes, doppler.rjakes, } \\ & \text { doppler.rounded, rayleighchan, ricianchan, stdchan, and "Fading } \\ & \text { Channels" }\end{aligned}$

Purpose
Construct flat Doppler spectrum object
Syntax dop = doppler.flat
Description

Properties

Theory and Applications MaxDopplerShift property of the channel object.
dop $=$ doppler.flat creates a flat Doppler spectrum object that is to be used for the DopplerSpectrum property of a channel object (created with either the rayleighchan or the ricianchan function). The maximum Doppler shift of the flat Doppler spectrum object is specified by the

The flat Doppler spectrum object contains only one property, SpectrumType, which is read-only and has a fixed value of 'Flat'.

In a 3-D isotropic scattering environment, where the angles of arrival are uniformly distributed in the azimuth and elevation planes, the Doppler spectrum is found theoretically to be flat [2]. A flat Doppler spectrum is also specified in some cases of the ANSI J-STD-008 reference channel models for PCS, for both outdoor (pedestrian) and indoor (commercial) [1] applications.
The normalized flat Doppler power spectrum is given analytically by:

$$
S(f)=\frac{1}{2 f_{d}},|f| \leq f_{d}
$$

where f_{d} is the maximum Doppler frequency.

References

[1] ANSI J-STD-008, Personal Station-Base Station Compatibility Requirements for 1.8 to 2.0 GHz Code Division Multiple Access (CDMA) Personal Communications Systems, March 1995.
[2] Clarke, R. H., and Khoo, W. L., "3-D Mobile Radio Channel Statistics", IEEE Trans. Veh. Technol., Vol. 46, No. 3, pp. 798-799, August 1997.

doppler.flat

See Also
doppler, doppler.ajakes, doppler.bell, doppler.bigaussian, doppler.gaussian, doppler.jakes, doppler.rjakes, doppler.rounded, "Fading Channels", rayleighchan, ricianchan, and stdchan

Purpose

Construct Gaussian Doppler spectrum object
Syntax

Description

Properties

Theory and Applications

```
dop = doppler.gaussian
dop = doppler.gaussian(sigmagaussian)
```

The doppler.gaussian function creates a Gaussian Doppler spectrum object that is to be used for the DopplerSpectrum property of a channel object (created with either the rayleighchan or the ricianchan function).
dop $=$ doppler.gaussian creates a Gaussian Doppler spectrum object with a default standard deviation (normalized by the maximum Doppler
shift f_{d}, in Hz$) \sigma_{G, \text { norm }}=1 / \sqrt{2}$. The maximum Doppler shift f_{d} is specified by the MaxDopplerShift property of the channel object. Analytically, $\sigma_{G, n o r m}=\sigma_{G} / f_{d}=1 / \sqrt{2}$, where σ_{G} is the standard deviation of the Gaussian Doppler spectrum.
dop $=$ doppler.gaussian(sigmagaussian) creates a Gaussian Doppler spectrum object with a normalized f_{d} (by the maximum Doppler shift f_{d}, in Hz$) \sigma_{G, n o r m}$ of value sigmagaussian.

The Gaussian Doppler spectrum object contains the following properties.

The Gaussian power spectrum is considered to be a good model for multipath components with long delays in UHF communications [3]. It is also proposed as a model for the aeronautical channel [2]. A Gaussian

Property	Description
SpectrumType	Fixed value, 'Gaussian'
SigmaGaussian	Normalized standard deviation of the Gaussian Doppler spectrum (a real positive number)

doppler.gaussian

(wireless loop) and indoor (residential, office) [1]. The normalized Gaussian Doppler power spectrum is given analytically by:

$$
S_{G}(f)=\frac{1}{\sqrt{2 \pi \sigma_{G}^{2}}} \exp \left(-\frac{f^{2}}{2 \sigma_{G}^{2}}\right)
$$

An alternate representation is [4]:

$$
S_{G}(f)=\frac{1}{f_{c}} \sqrt{\frac{\ln 2}{\pi}} \exp \left(-(\ln 2)\left(\frac{f}{f_{c}}\right)^{2}\right)
$$

where $f_{c}=\sigma_{G} \sqrt{2 \ln 2}$ is the 3 dB cutoff frequency. If you set $f_{c}=f_{d} \sqrt{\ln 2}$, where f_{d} is the maximum Doppler shift, or equivalently $\sigma_{G}=f_{d} / \sqrt{2}$, the Doppler spread of the Gaussian power spectrum becomes equal to the Doppler spread of the Jakes power spectrum, where Doppler spread is defined as:

$$
\sigma_{D}=\sqrt{\int_{-\infty}^{\infty} f^{2} S(f) d f}
$$

The following code creates a Rayleigh channel object with a maximum Doppler shift of $f_{d}=10$. It then creates a Gaussian Doppler spectrum object with a normalized standard deviation of $\sigma_{G, \text { norm }}=0.5$, and assigns it to the DopplerSpectrum property of the channel object.

```
chan = rayleighchan(1/1000,10);
dop_gaussian = doppler.gaussian(0.5);
chan.DopplerSpectrum = dop_gaussian;
```


References

[1] ANSI J-STD-008, Personal Station-Base Station Compatibility Requirements for 1.8 to 2.0 GHz Code Division Multiple Access (CDMA) Personal Communications Systems, March 1995.
[2] Bello, P. A., "Aeronautical channel characterizations," IEEE Trans. Commun., Vol. 21, pp. 548-563, May 1973.
[3] Cox, D. C., "Delay Doppler characteristics of multipath propagation at 910 MHz in a suburban mobile radio environment," IEEE Transactions on Antennas and Propagation, Vol. AP-20, No. 5, pp. 625-635, Sept. 1972.
[4] Pätzold, M., Mobile Fading Channels, Wiley, 2002.

See Also

doppler, doppler.ajakes, doppler.bell, doppler.bigaussian, doppler.flat, doppler.jakes, doppler.rjakes, doppler. rounded, "Fading Channels", rayleighchan, ricianchan, and stdchan

doppler.jakes

Purpose Construct Jakes Doppler spectrum object

Syntax

Description
dop $=$ doppler.jakes creates a Jakes Doppler spectrum object that is to be used for the DopplerSpectrum property of a channel object (created with either the rayleighchan or the ricianchan function). The maximum Doppler shift of the Jakes Doppler spectrum object is specified by the MaxDopplerShift property of the channel object. By default, channel objects are created with a Jakes Doppler spectrum.

Properties The Jakes Doppler spectrum object contains only one property, SpectrumType, which is read-only and has a fixed value of 'Jakes'.

Theory The Jakes Doppler power spectrum model is actually due to Gans and
Applications [2], who analyzed the Clarke-Gilbert model ([1], [3], and [5]). The Clarke-Gilbert model is also called the classical model.

The Jakes Doppler power spectrum applies to a mobile receiver. It derives from the following assumptions [6]:

- The radio waves propagate horizontally.
- At the mobile receiver, the angles of arrival of the radio waves are uniformly distributed over $[-\pi, \pi]$.
- At the mobile receiver, the antenna is omnidirectional (i.e., the antenna pattern is circular-symmetrical).

The normalized Jakes Doppler power spectrum is given analytically by:

$$
S(f)=\frac{1}{\pi f_{d} \sqrt{1-\left(f / f_{d}\right)^{2}}},|f| \leq f_{d}
$$

where f_{d} is the maximum Doppler frequency.

doppler.jakes

References

[1] Clarke, R. H., "A Statistical Theory of Mobile-Radio Reception," Bell System Technical Journal, Vol. 47, No. 6, pp. 957-1000, July-August 1968.
[2] Gans, M. J., "A Power-Spectral Theory of Propagation in the Mobile-Radio Environment," IEEE Trans. Veh. Technol., Vol. VT-21, No. 1, pp. 27-38, Feb. 1972.
[3] Gilbert, E. N., "Energy Reception for Mobile Radio," Bell System Technical Journal, Vol. 44, No. 8, pp. 1779-1803, Oct. 1965.
[4] Jakes, W. C., Ed. Microwave Mobile Communications, Wiley, 1974.
[5] Lee, W. C. Y., Mobile Communications Engineering: Theory and Applications, 2nd Ed., McGraw-Hill, 1998.
[6] Pätzold, M., Mobile Fading Channels, Wiley, 2002.
See Also
doppler, doppler.ajakes, doppler.bell, doppler.bigaussian, doppler.flat, doppler.gaussian, doppler.rjakes, doppler.rounded, "Fading Channels", rayleighchan, ricianchan, and stdchan

doppler.riakes

Purpose Construct restricted Jakes Doppler spectrum object

```
Syntax
dop = doppler.rjakes
dop = doppler.rjakes(freqminmaxrjakes)
```


Description

The doppler.rjakes function creates a restricted Jakes (RJakes) Doppler spectrum object that is used for the DopplerSpectrum property of a channel object (created with either the rayleighchan or the ricianchan function).
dop $=$ doppler.rjakes creates a Doppler spectrum object equivalent to the Jakes Doppler spectrum. The maximum Doppler shift of the RJakes Doppler spectrum object is specified by the MaxDopplerShift property of the channel object.
dop $=$ doppler.rjakes(freqminmaxrjakes), where freqminmaxrjakes is a row vector of two finite real numbers between 0 and 1, creates a Jakes Doppler spectrum. This spectrum is nonzero only for normalized frequencies (by the maximum Doppler shift,
f_{d}, in Hertz), $f_{\text {norm }}$, such that $0 \leq f_{\min , \text { norm }} \leq\left|f_{\text {norm }}\right| \leq f_{\text {max }, \text { norm }} \leq 1$, where $f_{\text {min,norm }}$ is given by freqminmaxrjakes(1) and $f_{\text {max, norm }}$ is given by freqminmaxrjakes(2). The maximum Doppler shift f_{d} is specified by the MaxDopplerShift property of the channel object.

Analytically, $f_{\min , n o r m}=f_{\min } / f_{d}$ and $f_{\text {max, norm }}=f_{\max } / f_{d}$, where $f_{\min }$ is the minimum Doppler shift (in Hertz) and $f_{\text {max }}$ is the maximum Doppler shift (in Hertz).
When dop is used as the DopplerSpectrum property of a channel object, freqminmaxrjakes(1) and freqminmaxrjakes(2) should be spaced by more than $1 / 50$. Assigning a smaller spacing results in freqminmaxrjakes being reset to the default value of [0 1].

Properties

The RJakes Doppler spectrum object contains the following properties.

Property	Description
SpectrumType	Fixed value, 'RJakes '
FreqMinMaxRJakes	Vector of minimum and maximum normalized Doppler shifts (two real finite numbers between 0 and 1)

The Jakes power spectrum is based on the assumption that the angles of arrival at the mobile receiver are uniformly distributed [1], where the spectrum covers the frequency range from $-f_{d}$ to f_{d}, f_{d} being the maximum Doppler shift. When the angles of arrival are not uniformly distributed, the Jakes power spectrum does not cover the full Doppler
bandwidth from $-f_{d}$ to f_{d}. This exception also applies to the case where the antenna pattern is directional. This type of spectrum is known as restricted Jakes [3]. The RJakes Doppler spectrum object covers only the case of a symmetrical power spectrum, which is nonzero only for frequencies f such that $0 \leq f_{\text {min }} \leq|f| \leq f_{\max } \leq f_{d}$.
The normalized RJakes Doppler power spectrum is given analytically by:

$$
S(f)=\frac{A_{r}}{\pi f_{d} \sqrt{1-\left(f / f_{d}\right)^{2}}}, 0 \leq f_{\min } \leq|f| \leq f_{\max } \leq f_{d}
$$

where

$$
A_{r}=\frac{1}{\frac{2}{\pi}\left[\sin ^{-1}\left(\frac{f_{\max }}{f_{d}}\right)-\sin ^{-1}\left(\frac{f_{\min }}{f_{d}}\right)\right]}
$$

doppler.riakes

$f_{\min }$ and $f_{\text {max }}$ denote the minimum and maximum frequencies where the spectrum is nonzero. They can be determined from the probability density function of the angles of arrival.

Example

References

See Also

The following code first creates a Rayleigh channel object with a maximum Doppler shift of $f_{d}=10$. It then creates an RJakes Doppler object with minimum normalized Doppler shift $f_{\min , \text { norm }}=0.14$ and maximum normalized Doppler shift $f_{\text {max, norm }}=0.9$.

The Doppler object is assigned to the DopplerSpectrum property of the channel object. The channel then has a Doppler spectrum that is nonzero for frequencies f such that $0 \leq f_{\text {min }} \leq|f| \leq f_{\text {max }} \leq f_{d}$, where

```
fmin}=\mp@subsup{f}{\mathrm{ min,norm }}{}\times\mp@subsup{f}{d}{}=1.4\textrm{Hz}\mathrm{ and }\mp@subsup{f}{\mathrm{ max }}{}=\mp@subsup{f}{\mathrm{ max,norm }}{}\times\mp@subsup{f}{d}{}=9\textrm{Hz}
    chan = rayleighchan(1/1000, 10);
    dop_rjakes = doppler.rjakes([0.14 0.9]);
    chan.DopplerSpectrum = dop_rjakes;
    chan.DopplerSpectrum
```

The output is:
SpectrumType: 'RJakes'
FreqMinMaxRJakes: [0.1400 0.9000]
[1] Jakes, W. C., Ed. Microwave Mobile Communications, Wiley, 1974.
[2] Lee, W. C. Y., Mobile Communications Engineering: Theory and Applications, 2nd Ed., McGraw-Hill, 1998.
[3] Pätzold, M., Mobile Fading Channels, Wiley, 2002.
doppler, doppler.ajakes, doppler.bell, doppler.bigaussian, doppler.flat, doppler.gaussian, doppler.jakes, doppler.rounded, "Fading Channels", rayleighchan, ricianchan, and stdchan

doppler.rounded

Purpose
Syntax

Description

Construct rounded Doppler spectrum object

```
dop = doppler.rounded
dop = doppler.rounded(coeffrounded)
```

The doppler.rounded function creates a rounded Doppler spectrum object that is used for the DopplerSpectrum property of a channel object (created with either the rayleighchan or the ricianchan function).
dop $=$ doppler.rounded creates a rounded Doppler spectrum object with default polynomial coefficients $a_{0}=1, a_{2}=-1.72, a_{4}=0.785$ (see "Theory and Applications" on page 2-199 for the meaning of these coefficients). The maximum Doppler shift f_{d} (in Hertz) is specified by the MaxDopplerShift property of the channel object.
dop = doppler. rounded(coeffrounded), where coeffrounded is a row vector of three finite real numbers, creates a rounded Doppler spectrum object with polynomial coefficients, a_{0}, a_{2}, a_{4}, given by coeffrounded(1), coeffrounded (2), and coeffrounded(3), respectively.

The rounded Doppler spectrum object contains the following properties.

Property	Description
SpectrumType	Fixed value, 'Rounded '
CoeffRounded	Vector of three polynomial coefficients (real finite numbers)

A rounded spectrum is proposed as an approximation to the measured Doppler spectrum of the scatter component of fixed wireless channels at 2.5 GHz [1]. However, the shape of the spectrum is influenced by the center carrier frequency.

doppler.rounded

The normalized rounded Doppler spectrum is given analytically by a polynomial in f of order four, where only the even powers of f are retained:

$$
S(f)=C_{r}\left[a_{0}+a_{2}\left(\frac{f}{f_{d}}\right)^{2}+a_{4}\left(\frac{f}{f_{d}}\right)^{4}\right],|f| \leq f_{d}
$$

where

$$
C_{r}=\frac{1}{2 f_{d}\left[a_{0}+\frac{a_{2}}{3}+\frac{a_{4}}{5}\right]}
$$

f_{d} is the maximum Doppler shift, and a_{0}, a_{2}, a_{4} are real finite coefficients. The fixed wireless channel model of IEEE 802.16 [1] uses the following parameters: $a_{0}=1, a_{2}=-1.72$, and $a_{4}=0.785$. Because the channel is modeled as Rician fading with a fixed line-of-sight (LOS) component, a Dirac delta is also present in the Doppler spectrum at $f=0$.

Example

References

The following code creates a Rician channel object with a maximum Doppler shift of $f_{d}=10$. It then creates a rounded Doppler spectrum object with polynomial coefficients $a_{0}=1.0, a_{2}=-0.5, a_{4}=1.5$, and assigns it to the DopplerSpectrum property of the channel object.

```
chan = ricianchan(1/1000,10,1);
dop_rounded = doppler.rounded([1.0 -0.5 1.5]);
chan.DopplerSpectrum = dop_rounded;
```

[1] IEEE 802.16 Broadband Wireless Access Working Group, "Channel models for fixed wireless applications," IEEE 802.16a-03/01, 2003-06-27.

doppler.rounded

See Also
doppler, doppler.ajakes, doppler.bell, doppler.bigaussian, doppler.flat, doppler.gaussian, doppler.jakes, doppler.rjakes, "Fading Channels", rayleighchan, ricianchan, and stdchan

Purpose \begin{tabular}{ll}

Syntax \& | Decode using differential pulse code modulation |
| :--- |
| sig = dpcmdeco(indx, codebook, predictor) |
| [sig, quanterror] = dpcmdeco(indx, codebook, predictor) |

Description \& | sig = dpcmdeco(indx, codebook, predictor) implements differential |
| :--- |
| pulse code demodulation to decode the vector indx. The vector codebook |
| represents the predictive-error quantization codebook. The vector |
| predictor specifies the predictive transfer function. If the transfer |
| function has predictive order M, predictor has length M+1 and an |
| initial entry of 0. To decode correctly, use the same codebook and |
| predictor in dpcmenco and dpcmdeco. |

\& | See "Representing Partitions", "Representing Codebooks", or the |
| :--- |
| quantiz reference page, for a description of the formats of partition |
| and codebook. |

[sig, quanterror] = dpcmdeco(indx, codebook, predictor) is the

same as the syntax above, except that the vector quanterror is

the quantization of the predictive error based on the quantization

parameters. quanterror is the same size as sig.
\end{tabular}

Note You can estimate the input parameters codebook, partition, and predictor using the function dpcmopt.

Examples See "Example: DPCM Encoding and Decoding" and "Example: Comparing Optimized and Nonoptimized DPCM Parameters" for examples that use dpcmdeco.
See Also quantiz, dpcmopt, dpcmenco, "Differential Pulse Code Modulation"
References [1] Kondoz, A. M., Digital Speech, Chichester, England, John Wiley \& Sons, 1994.

Purpose

Encode using differential pulse code modulation
Syntax
indx = dpcmenco(sig,codebook,partition,predictor)
[indx, quants] = dpcmenco(sig,codebook,partition,predictor)
Description
indx = dpcmenco(sig, codebook, partition, predictor) implements differential pulse code modulation to encode the vector sig. partition is a vector whose entries give the endpoints of the partition intervals. codebook, a vector whose length exceeds the length of partition by one, prescribes a value for each partition in the quantization. predictor specifies the predictive transfer function. If the transfer function has predictive order M , predictor has length $\mathrm{M}+1$ and an initial entry of 0 . The output vector indx is the quantization index.

See "Differential Pulse Code Modulation" for more about the format of predictor. See "Representing Partitions", "Representing Partitions", or the reference page for quantiz in this chapter, for a description of the formats of partition and codebook.
[indx,quants] = dpcmenco(sig,codebook,partition,predictor) is the same as the syntax above, except that quants contains the quantization of sig based on the quantization parameters. quants is a vector of the same size as sig.

Note If predictor is an order-one transfer function, the modulation is called a delta modulation.

See "Example: DPCM Encoding and Decoding" and "Example: Comparing Optimized and Nonoptimized DPCM Parameters" for examples that use dpcmenco.

See Also quantiz, dpcmopt,dpcmdeco, "Differential Pulse Code Modulation"
References
[1] Kondoz, A. M., Digital Speech, Chichester, England, John Wiley \& Sons, 1994.

Purpose
Optimize differential pulse code modulation parameters
Syntax
Description
predictor $=$ dpcmopt(training_set,ord)
[predictor,codebook, partition] = dpcmopt(training_set,ord, len)
[predictor,codebook,partition] = dpcmopt(training_set,ord, ini_cb)
predictor $=$ dpcmopt(training_set,ord) returns a vector representing a predictive transfer function of order ord that is appropriate for the training data in the vector training_set. predictor is a row vector of length ord+1. See "Representing Predictors" for more about its format.

Note dpcmopt optimizes for the data in training_set. For best results, training_set should be similar to the data that you plan to quantize.
[predictor,codebook,partition] = dpcmopt(training_set,ord,len) is the same as the syntax above, except that it also returns corresponding optimized codebook and partition vectors codebook and partition. len is an integer that prescribes the length of codebook. partition is a vector of length len-1. See "Representing Partitions", "Representing Codebooks", or the reference page for quantiz in this chapter, for a description of the formats of partition and codebook.
[predictor,codebook, partition] = dpcmopt(training_set, ord, ini_cb) is the same as the first syntax, except that it also returns corresponding optimized codebook and partition vectors codebook and partition. ini_cb, a vector of length at least 2 , is the initial guess of the codebook values. The output codebook is a vector of the same length as ini_cb. The output partition is a vector whose length is one less than the length of codebook.

Examples See "Example: Comparing Optimized and Nonoptimized DPCM Parameters" for an example that uses dpcmopt.
See Also dpcmenco, dpcmdeco, quantiz, lloyds, "Differential Pulse Code Modulation"

Purpose Differential phase shift keying demodulation

```
Syntax \(\quad z=\operatorname{dpskdemod}(y, m)\)
z = dpskdemod(y,M,phaserot)
z = dpskdemod(y, M, phaserot,symbol_order)
```


Description

Warning

This function is obsolete and may be removed in the future. We strongly recommend that you use modem.dpskdemod instead.
$z=d p s k d e m o d(y, M)$ demodulates the complex envelope y of a DPSK modulated signal. M is the alphabet size and must be an integer. If y is a matrix with multiple rows and columns, the function processes the columns independently.

Note The first element of the output z, or the first row of z, if z is a matrix with multiple rows, represents an initial condition, because the differential algorithm compares two successive elements of the modulated signal.
$z=d p s k d e m o d(y, M$, phaserot $)$ specifies the phase rotation of the modulation in radians. In this case, the total phase shift per symbol is the sum of phaserot and the phase generated by the differential modulation.
z = dpskdemod(y,M, phaserot, symbol_order) specifies how the function assigns binary words to corresponding integers. If symbol_order is set to 'bin' (default), the function uses a natural binary-coded ordering. If symbol_order is set to 'gray', it uses a Gray-coded ordering.

Examples

The example below illustrates the fact that the first output symbol of a differential PSK demodulator is an initial condition rather than useful information.

```
M = 4; % Alphabet size
x = randint(1000,1,M); % Random message
y = dpskmod(x,M); % Modulate.
z = dpskdemod(y,M); % Demodulate.
% Check whether the demodulator recovered the message.
s1 = symerr(x,z) % Expect one symbol error, namely, the first symbol.
s2 = symerr(x(2:end),z(2:end)) % Ignoring 1st symbol, expect no errors.
```

The output is below.
s1 =

1
s2 =
0
For another example that uses this function, see "Example: Curve Fitting for an Error Rate Plot".

See Also dpskmod, pskdemod, pskmod, "Modulation"

dpskmod

Purpose Differential phase shift keying modulation

```
Syntax
y = dpskmod(x, M)
y = dpskmod(x,M,phaserot)
y = dpskmod(x,M, phaserot,symbol_order)
```


Description

Warning

This function is obsolete and may be removed in the future. We strongly recommend that you use modem. dpskmod instead.
$y=d p s k m o d(x, M)$ outputs the complex envelope y of the modulation of the message signal x using differential phase shift keying modulation. M is the alphabet size and must be an integer. The message signal must consist of integers between 0 and $M-1$. If x is a matrix with multiple rows and columns, the function processes the columns independently.
$y=d p s k m o d(x, M, p h a s e r o t)$ specifies the phase rotation of the modulation in radians. In this case, the total phase shift per symbol is the sum of phaserot and the phase generated by the differential modulation.
$\mathrm{y}=\mathrm{dpskmod}(\mathrm{x}, \mathrm{M}, \mathrm{phaserot}$, symbol_order) specifies how the function assigns binary words to corresponding integers. If symbol_order is set to 'bin' (default), the function uses a natural binary-coded ordering. If symbol_order is set to 'gray', it uses a Gray-coded ordering.

Examples

The example below plots the output of the dpskmod function. The image shows the possible transitions from each symbol in the DPSK signal constellation to the next symbol.

```
M = 4; % Use DQPSK in this example, so M is 4.
x = randint(500,1,M,13); % Random data
y = dpskmod(x,M,pi/8); % Modulate using a nonzero initial phase.
plot(y) % Plot all points, using lines to connect them.
```


For another example that uses this function, see "Example: Curve Fitting for an Error Rate Plot".

See Also

dpskdemod, pskmod, pskdemod, "Modulation"

Purpose Low-density parity-check codes from DVB-S. 2 standard

$$
\text { Syntax } \quad H=\operatorname{dvbs} 2 l d p c(r)
$$

Description

Example

See Also
$H=\operatorname{dvbs2ldpc}(r)$ returns the parity-check matrix of the LDPC code with code rate r from the DVB-S. 2 standard. H is a sparse logical matrix.
Possible values for r are $1 / 4,1 / 3,2 / 5,1 / 2,3 / 5,2 / 3,3 / 4,4 / 5,5 / 6,8 / 9$, and $9 / 10$. The block length of the code is 64800 .

The default parity-check matrix (32400-by-64800) corresponds to an irregular LDPC code with the structure shown in the following table.

Row	Number of $\mathbf{1 s}$ Per Row
1	6
2 to 32400	7

Column	Number of $\mathbf{1 s}$ Per Column
1 to 12960	8
12961 to 32400	3

Columns 32401 to 64800 form a lower triangular matrix. Only the elements on its main diagonal and the subdiagonal immediately below are 1 s . This LDPC code is used in conjunction with a BCH code in the Digital Video Broadcasting standard DVB-S. 2 to achieve a packet error rate below 10^{-7} at about 0.7 dB to 1 dB from the Shannon limit.

```
H = dvbs2ldpc(3/5);
spy(H); % Visualize the location of nonzero elements in H.
henc = fec.ldpcenc(H);
hdec = fec.ldpcdec(H);
```

fec.ldpcdec, fec.ldpcenc, spy

Purpose
Block encoder
Syntax

```
code = encode(msg,n,k,'linear/fmt',genmat)
code = encode(msg,n,k,'cyclic/fmt',genpoly)
code = encode(msg,n,k,'hamming/fmt',prim_poly)
code = encode(msg,n,k)
[code,added] = encode(...)
```


Optional

Inputs

Input	Default Value
$f m t$	binary
genpoly	cyclpoly (n, k)
prim_poly	gfprimdf $(\mathrm{n}-\mathrm{k})$

Description

For All Syntaxes

The encode function encodes messages using one of the following error-correction coding methods:

- Linear block
- Cyclic
- Hamming

For all of these methods, the codeword length is n and the message length is k.
msg, which represents the messages, can have one of several formats. The table below shows which formats are allowed for msg, how the argument fmt should reflect the format of msg, and how the format of the output code depends on these choices. The examples in the table are for $\mathrm{k}=4$. If fmt is not specified as input, its default value is binary.

Note If $2^{\wedge} n$ or $2^{\wedge} k$ is large, use the default binary format instead of the decimal format. This is because the function uses a binary format internally, while the roundoff error associated with converting many bits to large decimal numbers and back might be substantial.

Information Formats

Dimension of msg	Value of fmt Argument	Dimension of code
Binary column or row vector	binary	Binary column or row vector
Example: msg = $\left.\begin{array}{llllllllllll}0 & 1 & 1 & 0, & 0 & 0 & 1,1 & 0 & 0 & 1\end{array}\right] .{ }^{\prime}$		
Binary matrix with k columns	binary	Binary matrix with n columns
Column or row vector of integers in the range [$0,2^{\wedge} k-1$]	decimal	Column or row vector of integers in the range [0, 2^n-1]
Example: msg = [6, 10, 9].'		

For Specific Syntaxes

code $=$ encode(msg, n, k, linear/fmt',genmat) encodes msg using genmat as the generator matrix for the linear block encoding method. genmat, a k-by-n matrix, is required as input.
code = encode(msg, n, k, 'cyclic/fmt',genpoly) encodes msg and creates a systematic cyclic code. genpoly is a row vector that gives the coefficients, in order of ascending powers, of the binary generator polynomial. The default value of genpoly is cyclpoly (n, k). By definition, the generator polynomial for an $[\mathrm{n}, \mathrm{k}]$ cyclic code must have degree $\mathrm{n}-\mathrm{k}$ and must divide $\mathrm{x}^{\mathrm{n}}-1$.
code $=$ encode(msg, n, k, 'hamming/fmt',prim_poly) encodes msg using the Hamming encoding method. For this syntax, n must have the form $2^{\mathrm{m}}-1$ for some integer m greater than or equal to 3 , and k must equal $n-m$. prim_poly is a row vector that gives the binary coefficients, in order of ascending powers, of the primitive polynomial for $\mathrm{GF}\left(2^{\mathrm{m}}\right)$ that is used in the encoding process. The default value of prim_poly is the default primitive polynomial gfprimdf(m).
code $=$ encode (msg, n, k) is the same as code $=$ encode(msg, n, k, 'hamming/binary').
[code,added] = encode(...) returns the additional variable added. added is the number of zeros that were placed at the end of the message matrix before encoding in order for the matrix to have the appropriate shape. "Appropriate" depends on n, k, the shape of msg, and the encoding method.

Examples

The example below illustrates the three different information formats (binary vector, binary matrix, and decimal vector) for Hamming code. The three messages have identical content in different formats; as a result, the three codes that encode creates have identical content in correspondingly different formats.

```
m = 4; n = 2^m-1; % Codeword length = 15
k = 11; % Message length
% Create 100 messages, k bits each.
msg1 = randint(100*k,1,[0,1]); % As a column vector
msg2 = vec2mat(msg1,k); % As a k-column matrix
msg3 = bi2de(msg2)'; % As a row vector of decimal integers
% Create 100 codewords, n bits each.
code1 = encode(msg1,n,k,'hamming/binary');
code2 = encode(msg2,n,k,'hamming/binary');
code3 = encode(msg3,n,k,'hamming/decimal');
if ( vec2mat(code1,n)==code2 & de2bi(code3',n)==code2 )
    disp('All three formats produced the same content.')
end
```

The output is

```
All three formats produced the same content.
```

The next example creates a cyclic code, adds noise, and then decodes the noisy code. It uses the decode function.

```
n = 3; k = 2; % A (3,2) cyclic code
msg = randint(100,k,[0,1]); % 100 messages, k bits each
code = encode(msg,n,k,'cyclic/binary');
% Add noise.
noisycode = rem(code + randerr(100,n,[0 1;.7 .3]), 2);
newmsg = decode(noisycode,n,k,'cyclic'); % Try to decode.
% Compute error rate for decoding the noisy code.
[number,ratio] = biterr(newmsg,msg);
disp(['The bit error rate is ',num2str(ratio)])
```

The output is below. Your error rate results might vary because the noise is random.

```
The bit error rate is 0.08
```

The next example encodes the same message using Hamming and cyclic methods. This example also creates Hamming code with the 'linear' option of the encode command. It then decodes each code and recovers the original message.

```
n = 7; % Codeword length
k = 4; % Message length
m = log2(n+1); % Express n as 2^m-1.
msg = randint(100,1,[0,2^k-1]); % Column of decimal integers
% Create various codes.
codehamming = encode(msg,n,k,'hamming/decimal');
[parmat,genmat] = hammgen(m);
codehamming2 = encode(msg,n,k,'linear/decimal',genmat);
if codehamming==codehamming2
    disp('The ''linear'' method can create Hamming code.')
```

```
end
codecyclic = encode(msg,n,k,'cyclic/decimal');
% Decode to recover the original message.
decodedhamming = decode(codehamming,n,k,'hamming/decimal');
decodedcyclic = decode(codecyclic,n,k,'cyclic/decimal');
if (decodedhamming==msg & decodedcyclic==msg)
    disp('All decoding worked flawlessly in this noiseless world.')
end
```

The output is

```
The 'linear' method can create Hamming code.
All decoding worked flawlessly in this noiseless world.
```


Algorithm

See Also decode, cyclpoly, cyclgen, hammgen, "Block Coding"

Purpose Equalize signal using equalizer object
Syntax
y = equalize(eqobj,x)
$y=$ equalize(eqobj, x,trainsig)
[y,yd] = equalize(...)
[y,yd,e] = equalize(...)

Description

$y=$ equalize (eqobj, x) processes the baseband signal vector x with equalizer object eqobj and returns the equalized signal vector y. At the end of the process, eqobj contains updated state information such as equalizer weight values and input buffer values. To construct eqobj, use the lineareq or dfe function, as described in "Using Adaptive Equalizer Functions and Objects". The equalize function assumes that the signal x is sampled at nsamp samples per symbol, where nsamp is the value of the nSampPerSym property of eqobj. For adaptive algorithms other than CMA, the equalizer adapts in decision-directed mode using a detector specified by the SigConst property of eqobj. The delay of the equalizer is (eqobj.RefTap-1)/eqobj.nSampPerSym, as described in "Delays from Equalization".

Note that (eqobj.RefTap-1) must be an integer multiple of nSampPerSym. For a fractionally-spaced equalizer, the taps are spaced at fractions of a symbol period. The reference tap pertains to training symbols, and thus, must coincide with a whole number of symbols (i.e., an integer number of samples per symbol). eqobj.RefTap=1 corresponds to the first symbol, eqobj. RefTap=nSampPerSym+1 to the second, and so on. Therefore (eqobj.RefTap-1) must be an integer multiple of nSampPerSym.

If eqobj.ResetBeforeFiltering is 0 , equalize uses the existing state information in eqobj when starting the equalization operation. As a result, equalize (eqobj, [x1 x2]) is equivalent to [equalize(eqobj, x1) equalize(eqobj, x2)]. To reset eqobj manually, apply the reset function to eqobj.

If eqobj.ResetBeforeFiltering is 1 , equalize resets eqobj before starting the equalization operation, overwriting any previous state information in eqobj.
$y=$ equalize(eqobj, x, trainsig) initially uses a training sequence to adapt the equalizer. After processing the training sequence, the equalizer adapts in decision-directed mode. The vector length of trainsig must be less than or equal to length(x)-(eqobj.RefTap-1)/eqobj.nSampPerSym.
$[y, y d]=$ equalize(...) returns the vector yd of detected data symbols.
[y,yd,e] = equalize(...) returns the result of the error calculation described in "Error Calculation". For adaptive algorithms other than CMA, e is the vector of errors between y and the reference signal, where the reference signal consists of the training sequence or detected symbols.

Examples
 For examples that use this function, see "Equalizing Using a Training Sequence", "Example: Equalizing Multiple Times, Varying the Mode", and "Example: Adaptive Equalization Within a Loop".

See Also
lms, signlms, normlms, varlms, rls, cma, lineareq, dfe, "Equalizers"

Purpose Generate eye diagram

```
Syntax eyediagram(x,n)
eyediagram(x,n,period)
eyediagram(x,n,period,offset)
eyediagram(x,n,period,offset,plotstring)
eyediagram(x,n,period,offset,plotstring,h)
h = eyediagram(...)
```


Description Warning

This is an obsolete function and may be removed in the future. Use the object commscope. eyediagram instead.

eyediagram (x, n) creates an eye diagram for the signal x, plotting n samples in each trace. n must be an integer greater than 1 . The labels on the horizontal axis of the diagram range between $-1 / 2$ and $1 / 2$. The function assumes that the first value of the signal, and every nth value thereafter, occur at integer times. The interpretation of x and the number of plots depend on the shape and complexity of x :

- If x is a real two-column matrix, eyediagram interprets the first column as in-phase components and the second column as quadrature components. The two components appear in different subplots of a single figure window.
- If x is a complex vector, eyediagram interprets the real part as in-phase components and the imaginary part as quadrature components. The two components appear in different subplots of a single figure window.
- If x is a real vector, eyediagram interprets it as a real signal. The figure window contains a single plot.
eyediagram(x, n, period) is the same as the syntax above, except that the labels on the horizontal axis range between -period/2 and period/2.
eyediagram(x, n, period, offset) is the same as the syntax above, except that the function assumes that the (offset+1)st value of the signal, and every nth value thereafter, occur at times that are integer multiples of period. The variable offset must be a nonnegative integer between 0 and $n-1$.
eyediagram(x, n, period, offset, plotstring) is the same as the syntax above, except that plotstring determines the plotting symbol, line type, and color for the plot. plotstring is a string whose format and meaning are the same as in the plot function. The default string is ' b-', which produces a blue solid line.
eyediagram(x, n, period, offset, plotstring, h) is the same as the syntax above, except that the eye diagram is in the figure whose handle is h , rather than in a new figure. h must be a handle to a figure that eyediagram previously generated.

Note You cannot use hold on to plot multiple signals in the same figure.
$\mathrm{h}=$ eyediagram (...) is the same as the earlier syntaxes, except that h is the handle to the figure that contains the eye diagram.

Examples For an online demonstration, type showdemo scattereyedemo.

See Also scatterplot, plot, scattereyedemo, "Eye Diagrams"

Purpose Launch eye diagram scope for eye diagram object H

Syntax eyescope

Description Use EyeScope to examine the data in an eye diagram object. EyeScope shows both the eye diagram plot and measurement results in a unified, graphical environment, providing a very efficient means for viewing eye diagram data. For more information, refer to the EyeScope chapter in the Communications Toolbox User's Guide.

Starting
 EyeScope

To start EyeScope from the MATLAB ${ }^{\circledR}$ command line, type: eyescope
The following figure shows an EyeScope that does not have an eye diagram object loaded in its memory.

The
EyeScope Environment

Alternatively, you can start EyeScope so it displays an eye diagram object. To start EyeScope so it displays an eye diagram object, type the following at the MATLAB command line: eyescope(h)

Note h is a handle to an eye diagram object in the workspace.

- "EyeScope Menu Bar" on page 2-222
- "Eye Diagram Object Plot and Plot Controls" on page 2-222
- "Eye Diagram Object Settings Panel" on page 2-224

EyeScope

- "Measurements" on page 2-225

EyeScope Menu Bar

EyeScope Menu Bar
The EyeScope menu bar is comprised of four menus: File, Options, View, and Help.

```
-4 EyeScope - [untitled.eds]
-|可x
File Options View Help
```

- Use the File menu to control the session management functions, import an eye diagram object into EyeScope, and export an eye diagram plot.
- Use the Options menu to setup the eye diagram scope by selecting which eye diagram settings and measurements EyeScope displays.
- Use the View menu to toggle between Single eye diagram view or Compare measurement results view, and to add or modify a legend for the eye diagram plot.
- The Help menu is used to access help pertaining to the eye diagram object and EyeScope.

Eye Diagram Object Plot and Plot Controls

The Eye diagram object plot is the region of the GUI where the eye diagram plot appears.

Eye diagram plot controls are user-configurable settings that specify plot type, color scale, minimum and maximum plot PDF range, and plot time offset for the eye diagram being analyzed. To access the EyeScope plot controls Options > Eye Diagram Plot Controls

EyeScope

Note The value for the Plot time offset parameter can either be entered directly into the text box or set using the slide bar control.

For more information pertaining to the eye diagram properties, refer to the commscope.eyediagram reference page.

Eye Diagram Object Settings Panel

The eye diagram object settings panel displays the eye diagram object settings. The default EyeScope configuration displays the following eye diagram object settings:

- Sampling frequency
- Symbol rate
- Eye level boundaries
- BER threshold
- Amplitude threshold

To specify which eye diagram object settings display in EyeScope, refer to "Selecting Which Eye Diagram Object Settings To Display" on page $2-232$. If you select additional eye diagram object settings to display in EyeScope, use the scroll buttons to view all of the settings.

Measurements

The Measurements panel displays the eye diagram measurement settings. The default EyeScope configuration displays the following eye diagram object measurements:

- Horizontal Eye Opening
- Random Jitter
- Deterministic Jitter
- Total Jitter
- RMS Jitter
- Peak to Peak Jitter
- Vertical Opening
- Rise Time
- Fall Time
- Eye SNR

EyeScope

Using EyeScope

Measurements		
Measurements		
Eye Crossing Time [1] (us):	Value	
Eye Crossing Time [2] (ms):	11	
Eye Level [1] (mA.U):	-907	
Eye Level [2] (mAU):	906	
Eye Amplitude (AU):	1.81	
Eye SNR:	9.66	
Horizontal Eye Opening (ms):	7.16	
Random Jitter (ms):	1.94	
Deterministic Jitter (us):	904	
Total Jitter (ms):	2.84	V

To select which eye diagram measurements EyeScope displays, refer to "Selecting Which Eye Diagram Measurements To Display" on page $2-233$. If you select additional eye diagram object measurements to display in EyeScope, use the scroll buttons to view all of the settings.

- "Starting EyeScope with an Argument" on page 2-227
- "Starting a new Session" on page 2-227
- "Opening a Session" on page 2-227
- "Saving a Session" on page 2-228
- "Importing an Eye Diagram Object" on page 2-229
- "Printing to a Figure" on page 2-231
- "Selecting Which Eye Diagram Object Settings To Display" on page 2-232
- "Selecting Which Eye Diagram Measurements To Display" on page 2-233

Starting EyeScope with an Argument

You can start EyeScope so it is displaying an eye diagram object. To start EyeScope so it is displaying an eye diagram object, type the following at the MATLAB command line:
eyescope (h)

Note h is a handle to an eye diagram object presently in the workspace.

Starting a new Session

Starting a new session purges EyeScope memory, returning EyeScope to an empty plot display. If changes have been made to an open session and you start a new session, you will be prompted to save the open session.

Opening a Session

To open session, choose the file name and location of the session file. The file extensions for a session file is .eds, which stands for eye diagram scope. If changes have been made to a session that is presently open and you try to open up a new session, you will be prompted to save the session that is presently open before the new session can start.

To open a session:
1
Click File > Open Session.
The Select File To Open Window appears.

2

Navigate to the EyeScope session file you want, and click Open.

Saving a Session

The Save Session selection saves the current session, updating the session file. A session file includes the eye diagram object, eyescope options, and plot control selections.
If you attempt to save a session that you have not previously saved, EyeScope will prompt you for a file name and location. Otherwise, the session is saved to the previously selected file.

To save a session, follow these steps:

1

Click File > Save Session.

2

Navigate to the folder where you want to save the EyeScope session file and click Save.

Importing an Eye Diagram Object

The Import menu selection imports an eye diagram object from either the workspace or a MAT-file to EyeScope. The imported variable name will be reconstructed to reflect the origin of the eye diagram object, as follows:

- If an object is imported from the workspace, the variable name will be ws_object name, where object name is the name of the original variable.
- If the object is imported from a MATLAB file, then the file name (without the path) precedes the object name.

Importing an object creates a copy of the object, using the naming convention previously described. EyeScope displays the object's contents as configured when the object was imported. EyeScope does not track any object changes made in the workspace (or to the MATLAB file) from which the object was imported.

To import an eye diagram object:

1

Click File > Import Eye Diagram Object

The Import eye diagram object window appears.

EyeScope

The contents panel of the of the Import eye diagram object window displays all eye diagram objects available in the source location.

2

From the Import eye diagram object window, select the source for the object being imported.

- Select From workspace to import an eye diagram object directly from the workspace.
- Select From File to choose an eye diagram object file that was previously saved and click Browse to select the file to be loaded.

3

Click Import.

Printing to a Figure

EyeScope allows you to print an eye diagram plot to a separate MATLAB figure window. From the MATLAB figure window, along with other tasks, you can print, zoom, or edit the plot.
To export an eye diagram figure:

1

Click File > Print to Figure

The MATLAB figure window, containing the exported image, appears.

Selecting Which Eye Diagram Object Settings To Display

The Eye Diagram Object Settings View allows you to select which object settings display in the eye diagram object settings panel. You make your selections in the Configure eye diagram object settings view window, where a shuttle control allows you to add, remove, or reorder the settings you are displaying.

To add an eye diagram object setting:

1

Click Options > Eye Diagram Object Settings View

The Configure eye diagram object settings view window appears.

2
Locate any items to be added in the list of Available items, and left-click to select.

Note To select multiple items, you can either press and hold the <Shift> key and left-click or press and hold the <Ctrl> key and left-click.

When you select an item, the Quick help panel displays information about the item. If you select multiple items, Quick help displays information pertaining to the last item you select.

3

Click Add.

Note Using the Move Up orMove Down buttons, you can change the order in which the eye diagrams settings you select appear.

4

Click OK .

Selecting Which Eye Diagram Measurements To Display

You can modify the contents of the measurement panel by selecting which eye diagram measurements display in the eye diagram object settings panel. You make your selections in the Configure measurements view window, where a shuttle control allows you to add, remove, or reorder the settings you are including.
Adding An Eye Diagram Measurement Setting
1
Click Options > Measurements View
The Configure measurements window appears.

2
Locate any items to be added in the list of Available items, and left-click to select.

Note To select multiple items, you can either press and hold the <Shift> key and left-click or press and hold the <Ctrl> key and left-click.

When you select an item, the Quick help panel displays information about the item. If you select multiple items, Quick help displays information pertaining to the last item you select.

3
Click Add.

Note Using the Move Up or Move Down buttons, you can change the order in which the eye diagrams settings you select appear.

4
Click OK .

fec.Idpcdec

Purpose
Syntax

Description

Construct LDPC decoder object

```
l = fec.ldpcdec(H)
l = fec.ldpcdec
decoded = decode(l, llr)
```

The fec.ldpcdec function creates a low-density parity-check (LDPC) decoder object that you can use with the decode method to decode output from a demodulator.
$1=\mathrm{fec} .1 \mathrm{dpcdec}(\mathrm{H})$ constructs an LDPC decoder object 1 for a binary systematic LDPC code with a parity-check matrix H.
H must be a sparse zero-one matrix. n and $n-k$ are the number of columns and the number of rows, respectively, in H .
$1=$ fec.ldpcdec constructs an LDPC decoder object 1 with a default parity-check matrix (32400-by-64800). For more information, see dvbs2ldpc

Properties

The following table describes the properties of an LDPC decoder object.
ParityCheckMatrix specifies the LDPC code. DecisionType, OutputFormat, DoParityChecks, and NumIterations specify settings for the decoding operation. All other properties are read-only.

Property	Description
ParityCheckMatrix	Parity-check matrix of the LDPC code. Stored as a sparse logical matrix with dimension $n-k$ by n (where $n>k>0$) of real numbers. All nonzero elements must be equal to 1 . The upper bound limit for the value of n is $2^{31}-1$
BlockLength	Total number of bits in a codeword, n.
NumInfoBits	Number of information bits in a codeword, k.

Property	Description
NumParityBits	Number of parity bits in a codeword, $n-k$.
DecisionType	Value can be 'Hard decision' (default) or 'Soft decision'.
OutputFormat	Value can be 'Information part' (default) or 'Whole codeword'.
DoParityChecks	Determines whether the parity checks should be verified after each iteration, and whether the decoder should stop iterating if all parity checks are satisfied. Value can be 'Yes' or 'No' (default).
NumIterations	Number of iterations to be performed for decoding one codeword. Default value is 50.
ActualNumIterations	Actual number of iterations executed for the last codeword. Initial value is [].
FinalParityChecks	(n-k)-by-1 vector. 1s indicate the parity checks that are not satisfied when the decoder stops. Initial value is [].

When ParityCheckMatrix is changed, the properties BlockLength, NumInfoBits, and NumParityBits are updated.

Setting DoParityChecks to 'Yes' can speed up decoding in some situations by reducing the number of iterations executed.

Decoding Method

This object has a method decode that is used to decode signals.

fec.ldpcdec

decoded $=$ decode(l, llr) decodes an LDPC code using the message-passing algorithm, where l is an LDPC decoder object and llr is a 1 -by-BlockLength vector.

The results returned in decoded depends on the parameters of the LDPC decoder object.

If the property...	is set to...	then decoded is...
DecisionType	'Hard decision'	The decoded bits. See "Decoding Algorithm" on page 2-238.
DecisionType	'Soft decision'	The log-likelihood ratios for the decoded bits.
OutputFormat	'Information part'	A 1-by-NumInfoBits vector.
OutputFormat	'Whole codeword'	A 1-by-BlockLength vector.

This method uses the properties DecisionType, OutputFormat, NumIterations, and DoParityChecks, and updates the values for FinalParityChecks, and ActualNumIterations.

Decoding Algorithm

The input to the LDPC decoder is the log-likelihood ratio (LLR), $L\left(c_{i}\right)$, which is defined by the following equation

$$
L\left(c_{i}\right)=\log \left(\frac{\operatorname{Pr}\left(c_{i}=0 \mid \text { channel output for } c_{i}\right)}{\operatorname{Pr}\left(c_{i}=1 \mid \text { channel output for } c_{i}\right)}\right)
$$

where c_{i} is the i th bit of the transmitted codeword, c. There are three key variables in the algorithm: $L\left(r_{j i}\right), L\left(q_{i j}\right)$, and $L\left(Q_{i}\right) . L\left(q_{i j}\right)$ is initialized as $L\left(q_{i j}\right)=L\left(c_{i}\right)$. For each iteration, update $L\left(r_{j i}\right), L\left(q_{i j}\right)$, and $L\left(Q_{i}\right)$ using the following equations

$$
\begin{aligned}
& L\left(r_{j i}\right)=2 \operatorname{atanh}\left(\prod_{i^{\prime} \in V_{j} \backslash i} \tanh \left(\frac{1}{2} L\left(q_{i^{\prime} j}\right)\right)\right) \\
& L\left(q_{i j}\right)=L\left(c_{i}\right)+\sum_{j^{\prime} \in C_{i} \backslash j} L\left(r_{j^{\prime} i}\right) \\
& L\left(Q_{i}\right)=L\left(c_{i}\right)+\sum_{j^{\prime} \in C_{i}} L\left(r_{j^{\prime} i}\right)
\end{aligned}
$$

where the index sets, $C_{i} \backslash j$ and $V_{j} \backslash i$, are chosen as shown in the following example.

Suppose you have the following parity-check matrix H:

$$
\mathbf{H}=\left(\begin{array}{llllllllll}
1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 1
\end{array}\right)
$$

For $i=5$ and $j=3$, the index sets would be

At the end of each iteration, $L\left(Q_{i}\right)$ provides an updated estimate of the a posteriori log-likelihood ratio for the transmitted bit c_{i}.

The soft-decision output for c_{i} is $L\left(Q_{i}\right)$. The hard-decision output for c_{i} is 1 if $L\left(Q_{i}\right)<0$, and 0 otherwise.
If the property DoParityCheck is set to ' no ', the algorithm iterates as many times as specified by NumIterations.

If the property DoParityCheck is set to 'yes', then at the end of each iteration the algorithm verifies the parity check equation ($\mathbf{H c}^{\mathrm{T}}=0$) and stops if it is satisfied.

In this algorithm, $\operatorname{atanh}(1)$ and $\operatorname{atanh}(-1)$ are set to be 19.07 and -19.07 respectively to avoid infinite numbers from being used in the algorithm's equations. These numbers were chosen because MATLAB returns 1 for $\tanh (19.07)$ and -1 for $\tanh (-19.07)$, due to finite precision.

Usage Example

This example demonstrates the use of this object.

```
enc = fec.ldpcenc; % Construct a default LDPC encoder object
% Construct a companion LDPC decoder object
dec = fec.ldpcdec;
dec.DecisionType = 'Hard decision';
dec.OutputFormat = 'Information part';
dec.NumIterations = 50;
% Stop if all parity-checks are satisfied
dec.DoParityChecks = 'Yes';
% Generate and encode a random binary message
msg = randint(1,enc.NumInfoBits,2);
codeword = encode(enc,msg);
% Construct a BPSK modulator object
modObj = modem.pskmod('M',2,'InputType','Bit');
% Modulate the signal (map bit 0 to 1 + Oi, bit 1 to -1 + Oi)
modulatedsig = modulate(modObj, codeword);
% Noise parameters
SNRdB = 1;
sigma = sqrt(10^(-SNRdB/10));
% Transmit signal through AWGN channel
receivedsig = awgn(modulatedsig, SNRdB, O); ...
    % Signal power = 0 dBW
% Visualize received signal
scatterplot(receivedsig)
```



```
% Construct a BPSK demodulator object to compute
% log-likelihood ratios
demodObj = modem.pskdemod(modObj,'DecisionType','LLR', ...
        'NoiseVariance',sigma^2);
% Compute log-likelihood ratios (AWGN channel)
llr = demodulate(demodObj, receivedsig);
% Decode received signal
decodedmsg = decode(dec, llr);
```

```
% Actual number of iterations executed
disp(['Number of iterations executed = ' ...
    num2str(dec.ActualNumIterations)]);
% Number of parity-checks violated
disp(['Number of parity-checks violated = ' ...
    num2str(sum(dec.FinalParityChecks))]);
% Compare with original message
disp(['Number of bits incorrectly decoded = ' ...
    num2str(nnz(decodedmsg-msg))]);
```


Example with a Parity-Check Matrix

This example demonstrates the construction of an LDPC decoder object with a parity-check matrix.

```
i = [\begin{array}{llllllllll}{1}&{3}&{2}&{4}&{1}&{2}&{3}&{3}&{4}\end{array}]; % row indices of 1s
j = [14 1 2 2 2 3 3 4 4 5 6]; % column indices of 1s
H = sparse(i,j,ones(length(i),1)); % parity-check matrix H
l = fec.ldpcdec(H);
```


References [1] Gallager, Robert G., Low-Density Parity-Check Codes, Cambridge, MA, MIT Press, 1963.

See Also dvbs2ldpc, fec.ldpcenc, modem

fec.Idpcenc

Purpose Construct LDPC encoder object
Syntax
$l=$ fec. 1 dpcenc (H)
$l=$ fec.ldpcenc
codeword $=$ encode $(1, \mathrm{msg})$

Description

The fec.ldpcenc function creates a low-density parity-check (LDPC) encoder object that you can use with the encode method to encode a signal.

1 = fec.ldpcenc (H) constructs an LDPC encoder object 1 for a binary systematic LDPC code with a parity-check matrix H .

H must be a sparse zero-one matrix. n and $n-k$ are the number of columns and the number of rows, respectively, in H. The last $n-k$ columns in H must be an invertible matrix in GF(2).
$l=$ fec.ldpcenc constructs an LDPC encoder object l with a default parity-check matrix (32400-by-64800). For more information, see dvbs2ldpc.

Properties

The following table describes the properties of an LDPC encoder object. Only ParityCheckMatrix is writable. All other properties are derived from it.

Property	Description
ParityCheckMatrix	Parity-check matrix of the LDPC code. Stored as a sparse logical matrix with
BlockLength	Total number of bits in a codeword, n.
NumInfoBits	Number of information bits in a codeword, k.

Property	Description
NumParityBits	Number of parity bits in a codeword, $n-k$.
EncodingAlgorithm	Method for solving the parity-check equation to compute the parity bits using the information bits. Set to 'Forward Substitution' if the last $n-k$ columns in H are a lower triangular matrix, 'Backward Substitution' if the last $n-k$ columns in Hare an upper triangular matrix, and 'Matrix Inverse' in all other situations.

LDPC Encoding Method

This object has a method encode that is used to encode signals. codeword = encode(l, msg) encodes msg using the LDPC code specified by the LDPC encoder object l. msg must be a binary 1-by-NumInfoBits vector.
codeword is a binary 1-by-BlockLength vector. The first NumInfoBits bits are the information bits (msg) and the last NumParityBits bits are the parity bits. The modulo-2 matrix product of ParityCheckMatrix and codeword' is a zero vector.

$$
\mathbf{H c}^{\mathrm{T}}=0
$$

Usage Example

This example demonstrates the use of this object.

```
% Construct a default LDPC encoder object
l = fec.ldpcenc;
% Generate a random binary message
msg = randint(1,l.NumInfoBits,2);
% Encode the message
```


fec.Idpcenc

```
codeword = encode(l, msg);
% Verify the parity checks (which should be a zero vector)
paritychecks = mod(l.ParityCheckMatrix * codeword', 2);
```


Example with a Parity-Check Matrix

This example demonstrates the construction of an LDPC encoder object with a parity-check matrix.

```
i = [llllllllllll}
j = [\begin{array}{lllllllllll}{1}&{1}&{2}&{2}&{3}&{4}&{4}&{6}\end{array}]; % column indices of 1s
H = sparse(i,j,ones(length(i),1)); % parity-check matrix H
l = fec.ldpcenc(H);
```


References [1] Gallager, Robert G., Low-Density Parity-Check Codes, Cambridge, MA, MIT Press, 1963.

See Also
dvbs2ldpc, fec.ldpcdec, modem

Purpose
Construct BCH decoder object
Syntax

```
h = fec.bchdec
h = fec.bchdec( \(\mathrm{N}, \mathrm{K}\) )
h = fec.bchdec(property1, value, ...)
h = fec.bchdec(bchenc_object)
```


Description

Properties
h = fec.bchdec constructs a BCH decoder with default properties. It is equivalent to: dec $=\mathrm{fec} . \operatorname{bchdec}(7,4)$
$h=$ fec.bchdec (N, K) constructs an (N,K) BCH decoder object dec. object dec with properties as specified by PROPERTY/VALUE pairs.
h = fec.bchdec(bchend_object) constructs a BCH decoder object dec by reading the property values from the BCH encoder object bchenc_object.

A BCH decoder object has the following properties, which are all
h = fec.bchdec(property1, value1, ...) constructs a BCH decoder writable except for the ones explicitly noted otherwise.

Property	Description
Type	The type of decoder object. This property also displays the effective message length and codeword length, taking shortening and puncturing into consideration. This property is not writable.
N	The codeword length of the base code, not including shortening or puncturing.

Property	Description
K	The uncoded message length, not including shortening.
T	The number of errors the base code is capable of correcting. This property is not writable.
ShortenedLength	The number of bits by which the code has been shortened.
ParityPosition	Must be 'beginning' or 'end'. Specifies if parity bits should appear at the beginning or end of the codeword.
PuncturePattern	Indicates which parity bits in a codeword are punctured. This binary-valued vector is of length N-K. Values of "0" indicate bits that are punctured, and values of "1" indicate bits that are not.
GenPoly	The generator polynomial for the code. GenPoly must be a Galois row vector that lists the coefficients, in order of descending powers, of the generator polynomial.

Methods

decoded = decode(dec, code)

Attempts to decode the received signal in CODE using the BCH decoder DEC. CODE must be a vector of binary elements, with an integer multiple of N-ShortenedLength-(Number of punctures) elements per column. There may be multiple codewords per channel, where each group of N-ShortenedLength-(Number of punctures) input elements represents one codeword to be decoded. Each column of CODE is
considered to be a separate channel, with the same BCH code applied to each channel.

```
decoded = decode(dec,code,erasures)
```

Attempts to decode the received signal with the additional erasure information provided by the ERASURES vector. The size of the ERASURES vector must be the same as the size of CODE, where a 0 marks no erasure, and a 1 marks an erased bit.

```
[decoded,cnumberr] = DECODE(...)
```

Returns an array CNUMERR with the same number of columns as CODE. Within each column of CNUMERR, each element is the number of corrected errors in the corresponding codeword of CODE. A value of -1 in CNUMERR indicates a decoding failure in that codeword in CODE.

```
[decoded,cnumberr,ccode] = decode(...)
```

Returns CCODE, the corrected version of CODE. The array CCODE is in the same format as CODE. If a decoding failure occurs in a certain codeword (i.e. full or partial column of CODE), then the corresponding full or partial column in CCODE contains that full or partial column unchanged.

Usage Examples

```
% Code parameters
n = 7; k =4;
% Construct encoder
coder = fec.bchenc(n,k);
% Message to encode
msg = [0 1 1 0]';
% Perform Coding
code = encode(coder,msg);
% Construct decoder from encoder
decoder = fec.bchdec(coder);
% Introduce 1 error in the codeword
code(end) = 0;
[decoded,cnumerr,ccode] = decode(decoder,code);
% Test for a encoding a punctured RS code
```

```
n = 7; k = 3;
msg = [llll}101;'
puncVec = [llllll}
coderNonPunc = fec.rsenc(n,k);
code = encode(coderNonPunc,msg);
coderPunc = copy(coderNonPunc);
coderPunc.puncturepattern = puncVec;
codePunc = encode(coderPunc,msg);
expCode = code([1:k k+find(puncVec)]);
```

Purpose
Construct BCH encoder object
Syntax

```
h = fec.bchenc
h = fec.bchenc(N,K)
h = fec.bchenc(property1, value1, ...)
h = fec.bchenc(bchdec_object)
```


Description

Properties
enc $=$ fec.bchenc constructs a BCH encoder enc with default properties. It is equivalent to: enc $=$ fec.bchenc $(7,4)$
enc $=$ fec.bchenc (N, K) constructs an (N,K) BCH encoder object enc.
enc = fec.bchenc(property1, valule1, ...) constructs a BCH encoder object enc with properties as specified by PROPERTY/VALUE pairs.
enc = fec.bchenc(bchdec_object) constructs a BCH encoder object enc by reading the property values from the BCH decoder object bchdec_object

A BCH encoder object has the following properties, which are all writable except for the ones explicitly noted otherwise.

Property	Description
Type	The type of encoder object. This property also displays the effective message length and codeword length, taking shortening and puncturing into consideration. This property is not writable.
N	The codeword length of the base code, not including shortening or puncturing.

Property	Description
K	The uncoded message length, not including shortening.
T	The number of errors the base code is capable of correcting. This property is not writable.
ShortenedLength	The number of bits by which the code has been shortened.
ParityPosition	Must be 'beginning' or 'end'. Specifies if parity bits should appear at the beginning or end of the codeword.
PuncturePattern	Indicates which parity bits in a codeword are punctured. This binary-valued vector is of length N-K. Values of "0" indicate bits that are punctured, and values of "1" indicate bits that are not.
GenPoly	The generator polynomial for the code. GenPoly must be a Galois row vector that lists the coefficients, in order of descending powers, of the generator polynomial.

Methods

```
CODEWORD = ENCODE(ENC, MSG)
```

Encodes MSG using the BCH code specified by a BCH encoder object ENC. MSG must be an array of binary elements, with an integer multiple of K-ShortenedLength elements per column. There may be multiple codewords per channel, where each group of K-ShortenedLength input elements represents one message word to be encoded. Each column of MSG is considered to be a separate channel, with the same BCH code applied to each channel.

Usage Examples

```
%Create BCH encoder object.
enc = fec.bchenc(7,4);
% Create a message to be encoded.
msg = [0 0 1 1 0]';
% Encode msg with the ENCODE function.
code = encode(enc,msg);
% Create a shortened encoder
encShort = copy(enc);
encShort.ShortenedLength = 1;
% Create a shortened message
msgShort = [0 1 1]';
codeShort = encode(encShort,msgShort);
% Create a punctured encoder
encPunc = copy(enc);
encPunc.PuncturePattern = [1 0 1];
% Create a punctured message
codePunc = encode(encPunc,msg);
```


References [1] Wicker, Stephen B., Error Control Systems for Digital

 Communication and Storage, Upper Saddle River, N.J., Prentice Hall, 1995.[2] Berlekamp, Elwyn R., Algebraic Coding Theory, New York, McGraw-Hill, 1968.

fec.rsdec

Purpose Construct Reed-Solomon decoder object
Syntax
h = fec.rsdec
h = fec.rsdec (N,K)
h = fec.rsdec(property1, value1, ...)
h = fec.rsdec(rsenc_object)

Description

dec $=$ fec.rsdec constructs a Reed-Solomon decoder with default properties. It is equivalent to dec $=$ fec.rsdec $(7,3)$
dec $=$ fec.rsdec (N, K) constructs an (N,K) Reed-Solomon decoder object dec.
dec = fec.rsdec(property1, value1, ...) constructs a Reed-Solomon decoder object dec with properties as specified by PROPERTY/VALUE pairs.
dec = fec.rsdec(rsenc_object) constructs a Reed-Solomon decoder object dec by reading the property values from the Reed-Solmon encoder object rsenc_object.

Properties

A Reed-Solomon decoder object has the following properties, all of which are writable, except for the ones explicitly noted otherwise.

Property	Description
Type	The type of decoder object. This property also displays the effective message length
N	The codeword length of the base code, not including shortening or puncturing.
K	The uncoded message length, not including shortening.
T	The number of errors the base code is capable of correcting. This property is not writable.

Property	Description
ShortenedLength	The number of symbols by which the code has been shortened.
ParityPosition	Must be 'beginning' or 'end'. Specifies if parity bits should appear at the beginning or end of the codeword.
PuncturePattern	Indicates which parity symbols in a codeword are punctured. This binary-valued vector is of length N-K. Values of "0" indicate symbols that are punctured, and values of "1" indicate symbols that are not.
GenPoly	The generator polynomial for the code. GENPOLY must be a Galois row vector that lists the coefficients, in order of descending powers, of the generator polynomial.

Methods

The fec.rsdec object has a method for encoding messages.

DECODED = DECODE(DEC,CODE)

Atempts to decode the received signal in CODE using the Reed-Solomon decoder DEC. CODE must be a vector of integer elements, with an integer multiple of N -ShortenedLength-(Number of punctures) elements per column. There may be multiple codewords per channel, where each group of N-ShortenedLength-(Number of punctures) input elements represents one codeword to be decoded. Each column of CODE is considered to be a separate channel, with the same Reed-Solomon code applied to each channel.

DECODED = DECODE(DEC,CODE,ERASURES)

Attempts to decode the received signal with the additional erasure information provided by the ERASURES vector. The size of the ERASURES vector must be the same as the size of CODE, where a 0 marks no erasure, and a 1 marks an erased symbol.

fec.rsdec

[DECODED,CNUMERR] = DECODE(...)
Returns an array CNUMERR with the same number of columns as CODE. Within each column of CNUMERR, each element is the number of corrected errors in the corresponding codeword of CODE. A value of -1 in CNUMERR indicates a decoding failure in that codeword in CODE.

```
[DECODED,CNUMERR,CCODE] = DECODE(...)
```

Returns CCODE, the corrected version of CODE. The array CCODE is in the same format as CODE. If a decoding failure occurs in a certain codeword (i.e. full or partial column of CODE), then the corresponding full or partial column in CCODE contains that full or partial column unchanged.

Usage Examples

```
% Code parameters
n = 7; k = 3;
% Construct encoder
coder = fec.rsenc(n,k);
% Message to encode
msg = [0 1 2]';
% Perform Coding
code = encode(coder,msg);
% Construct decoder from encoder
decoder = fec.rsdec(coder);
% Introduce 1 error in the codeword
code(end) = 0;
[decoded,cnumerr,ccode] = decode(decoder,code);
```


References [1] Wicker, Stephen B., Error Control Systems for Digital

Communication and Storage, Upper Saddle River, N.J., Prentice Hall, 1995.
[2] Berlekamp, Elwyn R., Algebraic Coding Theory, New York, McGraw-Hill, 1968.

Purpose
Construct Reed-Solomon encoder object
Syntax

```
enc = fec.rsenc
enc = fec.rsenc(N,K)
enc = fec.rsenc(property1, ...)
enc = fec.rsenc(rsdec_object)
```


Description

Properties properties equivalent to: $\mathrm{enc}=\operatorname{rsenc}(7,3)$ object enc.
enc = fec.rsenc(property1, value1, ...) constructs a PROPERTY/VALUE pairs. rsdec_object.
enc $=$ fec.rsenc constructs a Reed-Solomon encoder with default
enc $=$ fec.rsenc (N, K) constructs an (N,K) Reed-Solomon encoder Reed-Solomon encoder object enc with properties as specified by
enc = fec.rsenc(rsdec_object) constructs a Reed-Solomon encoder object enc by reading the property values from the RS decoder object

A Reed-Solomon encoder object has the following properties, all of which are writable, except for the ones explicitly noted otherwise.

Property	Description
Type	The type of encoder object. This property also displays the effective message length
N	The codeword length of the base code, not including shortening or puncturing.
K	The uncoded message length, not including shortening.
T	The number of errors the base code is capable of correcting. This property is not writable.

Property	Description
ShortenedLength	The number of symbols by which the code has been shortened.
ParityPosition	Must be 'beginning' or 'end'. Specifies if parity symbols should appear at the beginning or end of the codeword.
GenPoly	The generator polynomial for the code. GenPoly must be a Galois row vector that lists the coefficients, in order of descending powers, of the generator polynomial.

Methods

The fec.rsenc object has a method for encoding messages.

```
codeword =encode(enc, msg)
```

Encodes MSG using the Reed-Solomon code specified by a Reed-Solomon encoder object ENC. MSG must be an array of integer elements, with an integer multiple of K-ShortenedLength elements per column. There may be multiple codewords per channel, where each group of K-ShortenedLength input elements represents one message word to be encoded. Each column of MSG is considered to be a separate channel, with the same Reed-Solomon code applied to each channel.

Usage Examples

```
% Create Reed-Solomon encoder object.
enc = fec.rsenc(7,3);
% Create a message to be encoded.
msg = [0 1 0]';
% Encode msg with the ENCODE function.
code = encode(enc,msg);
% Create a shortened encoder
encShort = copy(enc);
```

```
encShort.ShortenedLength = 1;
% Create a shortened message
msgShort = [0 1]';
codeShort = encode(encShort,msgShort);
```

Purpose Discrete Fourier transform
Syntax fft(x)
Description $\mathrm{fft}(\mathrm{x})$ is the discrete Fourier transform (DFT) of the Galois vector x .If x is in the Galois field $\operatorname{GF}\left(2^{m}\right)$, the length of x must be $2^{\mathrm{m}}-1$.
Examples

$$
m=4 ;
$$

$$
\mathrm{n}=2^{\wedge} \mathrm{m}-1 \text {; }
$$

$$
x=g f\left(\text { randint }\left(n, 1,2^{\wedge} m\right), m\right) ; \% \text { Random vector }
$$

$$
y=f f t(x) ; \% \text { Transform of } x
$$

$$
z=\text { ifft }(y) ; \% \text { Inverse transform of } y
$$

$$
\text { ck }=\text { isequal }(z, x) \% \text { Check that ifft(fft(x)) recovers } x \text {. }
$$

The output is

```
ck =
```

1

Limitations

Algorithm

See Also

The Galois field over which this function works must have 256 or fewer elements. In other words, x must be in the Galois field $\operatorname{GF}\left(2^{\mathrm{m}}\right)$, where m is an integer between 1 and 8 .

If x is a column vector, $f f t$ applies dftmtx to the primitive element of the Galois field and multiplies the resulting matrix by x.
ifft, dftmtx, "Signal Processing Operations in Galois Fields"

Purpose Filter signal with channel object

$$
\text { Syntax } \quad y=\text { filter }(\text { chan }, x)
$$

Description $\quad \mathrm{y}=$ filter $($ chan, x$)$ processes the baseband signal vector x with the channel object chan. The result is the signal vector y . The final state of the channel is stored in chan. You can construct chan using either rayleighchan or ricianchan. The filter function assumes x is sampled at frequency $1 /$ ts, where ts equals the InputSamplePeriod property of chan.

If chan. ResetBeforeFiltering is 0 , filter uses the existing state information in chan when starting the filtering operation. As a result, filter(chan, [$\times 1 \times 2$]) is equivalent to [filter(chan, x1) filter(chan, x2)]. To reset chan manually, apply the reset function to chan.
If chan. ResetBeforeFiltering is 1 , filter resets chan before starting the filtering operation, overwriting any previous state information in chan.

Examples Examples using this function are in "Using Fading Channels".

See Also rayleighchan, ricianchan, reset, "Fading Channels"
References [1] Jeruchim, Michel C., Philip Balaban, and K. Sam Shanmugan, Simulation of Communication Systems, Second Edition, New York, Kluwer Academic/Plenum, 2000.

Purpose
1-D digital filter over Galois field

Syntax

$y=$ filter (b, a, x)
[y,zf] = filter(b,a,x)
$y=$ filter (b, a, x) filters the data in the vector x with the filter described by numerator coefficient vector b and denominator coefficient vector a. The vectors b, a, and x must be Galois vectors in the same field. If a(1) is not equal to 1, filter normalizes the filter coefficients by $a(1)$. As a result, $a(1)$ must be nonzero.

The filter is a "Direct Form II Transposed" implementation of the standard difference equation below.

$$
\begin{aligned}
a(1) * y(n)=b(1) * x(n) & +b(2) * x(n-1)+\ldots+b(n b+1) * x(n-n b) \ldots \\
& -a(2) * y(n-1)-\ldots-a(n a+1) * y(n-n a)
\end{aligned}
$$

$[y, z f]=$ filter (b, a, x) returns the final conditions of the filter delays in the Galois vector $z f$. The length of the vector $z f$ is $\max (\operatorname{size}(\mathrm{a}), \operatorname{size}(\mathrm{b}))-1$.

Examples An example is in "Huffman Coding".

Purpose	Estimate delay(s) between signals
Syntax	$\begin{aligned} & D=\text { finddelay }(X, Y) \\ & D=\text { finddelay }(\ldots, \text { MAXLAG }) \end{aligned}$
Description	$D=$ finddelay (X, Y), where X and Y are row or column vectors, returns an estimate of the delay D between X and Y, where X serves as the reference vector. If Y is delayed with respect to X, then D is positive. If Y is advanced with respect to X, then D is negative. Delays in X and Y can be introduced by pre-pending zeros.
	X and Y need not be exact delayed copies of each other, as finddelay (X, Y) returns an estimate of the delay via cross-correlation. However this estimated delay has a useful meaning only if there is sufficient correlation between delayed versions of X and Y. Also, if several delays are possible, as in the case of periodic signals, the delay with the smallest absolute value is returned. In the case that both a positive and a negative delay with the same absolute value are possible, the positive delay is returned.
	$\mathrm{D}=$ finddelay (X, Y), where X is a matrix of size $M X$-by- $N X(M X>1$ and $N X>1)$ and Y is a matrix of size $M Y$-by- $N Y(M Y>1$ and $N Y>1)$, returns a row vector D of estimated delays between each column of X and the corresponding column of Y. With this usage the number of columns of X must be equal to the number of columns of Y (i.e., $N X=N Y$).
	$D=$ finddelay (\ldots, , MAXLAG), uses MAXLAG as the maximum correlation window size used to find the estimated delay(s) between X and Y. The usage of MAXLAG is detailed in the table below.
	By default, MAXLAG is equal to $\operatorname{MAX}(L X, L Y)$ - 1 for two vector inputs (where $L X$ and $L Y$ are the lengths of X and Y , respectively), MAX($M X$, $M Y$)-1 for two matrix inputs, and $\operatorname{MAX}(L X, M Y)-1$ or $\operatorname{MAX}(M X, L Y)-1$ for one vector input and one matrix input. If MAXLAG is input as [], it is replaced by the default value. If any element of MAXLAG is negative, it is replaced by its absolute value. If any element of MAXLAG is not integer-valued, or is complex, Inf, or NaN, then finddelay returns an error.

finddelay

The calculation of the vector of estimated delays, D , depends on X, Y, and MAXLAG as shown in the following table.

MAXLAG	X	Y	D is calculated by...
Integer-valued scalar	Row or column vector or matrix	Row or column vector or matrix	Cross-correlating the columns of X and Y over a range of lags -MAXLAG:MAXLAG.
Integer-valued row or column vector	Row or column vector of length $L X \geq 1$	$\begin{aligned} & \text { Matrix of size } \\ & M Y \text {-by- } N Y \\ & (M Y>1, N Y>1) \end{aligned}$	Cross-correlating X and column j of Y over a range of lags -MAXLAG(j):MAXLAG(j), for $j=1: N Y$.
Integer-valued row or column vector	Matrix of size $M X$-by- $N X$ ($M X>1, N X>1$)	Row or column vector of length $L Y \geq 1$	Cross-correlating column j of X and Y over a range of lags -MAXLAG(j):MAXLAG(j), for $j=1: N X$.
Integer-valued row or column vector	Matrix of size $M X$-by- $N X$ $(M X>1, N X>1)$	Matrix of size MY-by-NY $\begin{aligned} & (M Y>1, \\ & N Y=N X>1) \end{aligned}$	Cross-correlating column j of X and column j of Y over a range of lags -MAXLAG(j):MAXLAG(j), for $j=1: N Y$.

Treating X as Multiple Channels

If you wish to treat a row vector X of length $L X$ as comprising one sample from $L X$ different channels, you need to append one or more rows of zeros to X so that it appears as a matrix. Then each column of X will be considered a channel.

For example, X = $\left[\begin{array}{llll}1 & 1 & 1 & 1\end{array}\right]$ is considered a single channel comprising four samples. To treat it as four different channels, each channel comprising one sample, define a new matrix Xm :

$$
\left.\mathrm{Xm}=\begin{array}{cccc}
{\left[\begin{array}{rll}
1 & 1 & 1 \\
1 ; \\
0 & 0 & 0
\end{array}\right]}
\end{array}\right] ;
$$

Each column of Xm corresponds to a single channel, each one containing the samples 1 and 0 .

finddelay

Theory and Algorithm

Examples

The finddelay function uses the xcorr function of Signal Processing Toolbox to determine the cross-correlation between each pair of signals at all possible lags specified by the user. The normalized cross-correlation between each pair of signals is then calculated. The estimated delay is given by the negative of the lag for which the normalized cross-correlation has the largest absolute value.

If more than one lag leads to the largest absolute value of the cross-correlation, such as in the case of periodic signals, the delay is chosen as the negative of the smallest (in absolute value) of such lags.

Pairs of signals need not be exact delayed copies of each other. However, the estimated delay has a useful meaning only if there is sufficient correlation between at least one pair of the delayed signals.

X and Y Are Vectors, and MAXLAG Is Not Specified

The following shows Y being delayed with respect to X by two samples.

```
X = [llll
Y = [0 0 1 2 3];
D = finddelay(X,Y)
```

The result is $D=2$.
Here is a case of Y advanced with respect to X by three samples.

```
X = [0 0 0 1 2 3 0 0]';
Y = [1 2 3 0]';
D = finddelay(X,Y)
```

The result is $\mathrm{D}=-3$.
The following illustrates a case where Y is aligned with X but is noisy.

```
X = [llllllll
Y = [0.02 0.12 1.08 2.21 2.95 -0.09];
D = finddelay(X,Y)
```

The result is $D=0$.

finddelay

If Y is a periodic version of X , the smallest possible delay is returned.

```
X = [llllll
Y = [1 2 3 0 0 0 0 1 2 3 0 0];
D = finddelay(X,Y)
```

The result is $\mathrm{D}=-1$.

X is a Vector, Y a Matrix, and MAXLAG Is a Scalar

MAXLAG is specified as a scalar (same maximum window sizes).

```
X = [llll
Y = [l0 1 0 0;
    1200;
    2 0 1 0;
    O O 2 1];
MAXLAG = 3;
D = finddelay(X,Y,MAXLAG)
```

The result is $D=\left[\begin{array}{llll}0 & -1 & 1 & 1\end{array}\right]$.
X and Y Are Matrices, and MAXLAG Is Not Specified

```
X = [0 1 0 0;
    1200;
    2 0 1 0;
    10 2 1;
    O O 0 2];
Y = [0 0 1 0;
    1 1 2 0;
    2 2 0 1;
    10 0 2;
    O O O 0];
D = finddelay(X,Y)
```

The result is $\mathrm{D}=\left[\begin{array}{llll}0 & -1 & -2 & -1\end{array}\right]$.

X and Y Are Matrices, and MAXLAG Is Specified

$$
\begin{aligned}
& \left.X=\begin{array}{rrrr}
0 & 1 & 0 & 0 ; \\
1 & 2 & 0 & 0 ; \\
2 & 0 & 1 & 0 ; \\
1 & 0 & 2 & 1 ; \\
0 & 0 & 0 & 2
\end{array}\right] ; \\
& \left.Y=\begin{array}{rlll}
0 & 0 & 1 & 0 ; \\
1 & 1 & 2 & 0 ; \\
2 & 2 & 0 & 1 ; \\
1 & 0 & 0 & 2 ; \\
0 & 0 & 0 & 0
\end{array}\right] ; \\
& \text { MAXLAG }=\left[\begin{array}{llll}
10 & 10 & 20 & 20
\end{array}\right] ; \\
& D=f i n d d e l a y(X, Y, M A X L A G)
\end{aligned}
$$

The result is $D=\left[\begin{array}{llll}0 & 1 & -2 & -1\end{array}\right]$.
See Also alignsignals, xcorr

fmdemod

Purpose Frequency demodulation

```
Syntax \(\quad z=f m d e m o d(y, F c, F s, f r e q d e v)\)
z = fmdemod(y,Fc,Fs,freqdev,ini_phase)
```

$z=f m d e m o d(y, F c, F s, f r e q d e v)$ demodulates the modulating signal z from the carrier signal using frequency demodulation. The carrier signal has frequency $\mathrm{Fc}(\mathrm{Hz})$ and sampling rate $\mathrm{Fs}(\mathrm{Hz})$, where Fs must be at least 2*Fc. The freqdev argument is the frequency deviation (Hz) of the modulated signal y.
z = fmdemod(y,Fc,Fs,freqdev,ini_phase) specifies the initial phase of the modulated signal, in radians.

Examples
 An example using fmdemod is on the reference page for fmmod .

See Also fmmod, pmmod, pmdemod, "Modulation"

Purpose Frequency modulation

```
Syntax \(\quad y=f m m o d(x, F c, F s, f r e q d e v)\)
\(y=f m m o d\left(x, F c, F s, f r e q d e v, i n i \_p h a s e\right)\)
```

Description

Examples
The code below modulates a multichannel signal using fmmod and demodulates it using fmdemod.

```
Fs = 8000; % Sampling rate of signal
Fc = 3000; % Carrier frequency
t = [0:Fs]'/Fs; % Sampling times
s1 = sin(2*pi*300*t)+2*sin(2*pi*600*t); % Channel 1
s2 = sin(2*pi*150*t)+2*sin(2*pi*900*t); % Channel 2
x = [s1,s2]; % Two-channel signal
dev = 50; % Frequency deviation in modulated signal
y = fmmod(x,Fc,Fs,dev); % Modulate both channels.
z = fmdemod(y,Fc,Fs,dev); % Demodulate both channels.
```

See Also fmdemod, ammod, pmmod, "Modulation"

```
Purpose Frequency shift keying demodulation
Syntax \(\quad z=\) fskdemod \(\left(y, M, f r e q \_s e p, n s a m p\right)\)
z = fskdemod(y,M,freq_sep,nsamp,Fs)
z = fskdemod(y,M,freq_sep,nsamp,Fs,symbol_order)
```

Description

Examples

$z=$ fskdemod(y, M,freq_sep, nsamp) noncoherently demodulates the complex envelope y of a signal using the frequency shift key method. M is the alphabet size and must be an integer power of 2. freq_sep is the frequency separation between successive frequencies in Hz. nsamp is the required number of samples per symbol and must be a positive integer greater than 1 . The sampling frequency is 1 Hz . If y is a matrix with multiple rows and columns, the function processes the columns independently.
$z=$ fskdemod(y, M,freq_sep, nsamp,Fs) specifies the sampling frequency in Hz .
z = fskdemod(y,M,freq_sep,nsamp,Fs, symbol_order) specifies how the function assigns binary words to corresponding integers. If symbol_order is set to 'bin' (default), the function uses a natural binary-coded ordering. If symbol_order is set to 'gray', it uses a Gray-coded ordering.

The example below illustrates FSK modulation and demodulation over an AWGN channel.

```
M = 2; k = log2(M);
EbNo = 5;
Fs = 16; nsamp = 17; freqsep = 8;
msg = randint(5000,1,M); % Random signal
txsig = fskmod(msg,M,freqsep,nsamp,Fs); % Modulate.
msg_rx = awgn(txsig,EbNo+10*log10(k)-10*log10(nsamp),...
    'measured',[],'dB'); % AWGN channel
msg_rrx = fskdemod(msg_rx,M,freqsep,nsamp,Fs); % Demodulate
[num,BER] = biterr(msg,msg_rrx) % Bit error rate
BER_theory = berawgn(EbNo,'fsk',M,'noncoherent') % Theoretical BER
```

The output is shown below. Your BER value might vary because the example uses random numbers.

```
BER =
    0.1086
BER_theory =
    0.1029
```

See Also
fskmod, pskmod, pskdemod, "Modulation"

```
Purpose Frequency shift keying modulation
Syntax \(\quad y=\) fskmod \(\left(x, m, f r e q \_s e p, n s a m p\right)\)
\(y=\) fskmod( \(\left.x, M, f r e q \_s e p, n s a m p, F s\right)\)
y = fskmod(x,M,freq_sep,nsamp,Fs,phase_cont)
y = FSKMOD(x,M,freq_sep,nsamp,Fs, phase_cont, symbol_order)
```


Description

Examples

$y=$ fskmod(x, M, freq_sep, nsamp) outputs the complex envelope y of the modulation of the message signal x using frequency shift keying modulation. M is the alphabet size and must be an integer power of 2. The message signal must consist of integers between 0 and $M-1$. freq_sep is the desired separation between successive frequencies in Hz. nsamp denotes the number of samples per symbol in y and must be a positive integer greater than 1 . The sampling rate of y is 1 Hz . By the Nyquist sampling theorem, freq_sep and M must satisfy $(M-1) * f r e q _s e p<=1$. If x is a matrix with multiple rows and columns, the function processes the columns independently.
$y=$ fskmod(x,M,freq_sep, nsamp,Fs) specifies the sampling rate of y in Hz. Because the Nyquist sampling theorem implies that the maximum frequency must be no larger than $\mathrm{Fs} / 2$, the inputs must satisfy (M-1)*freq_sep <= Fs.
$y=f s k m o d\left(x, M, f r e q _s e p, n s a m p, F s\right.$, phase_cont) specifies the phase continuity. Set phase_cont to 'cont' to force phase continuity across symbol boundaries in \bar{y}, or 'discont' to avoid forcing phase continuity. The default is 'cont'.
y = FSKMOD(x,M,freq_sep,nsamp,Fs,phase_cont,symbol_order) specifies how the function assigns binary words to corresponding integers. If symbol_order is set to 'bin' (default), the function uses a natural binary-coded ordering. If symbol_order is set to 'gray', it uses a Gray-coded ordering.

The example below illustrates the syntax of fskmod using a random signal.

$$
M=4 ; \text { freqsep }=8 ; \text { nsamp }=8 ; \text { Fs }=32 \text {; }
$$

```
x = randint(1000,1,M); % Random signal
y = fskmod(x,M,freqsep,nsamp,Fs); % Modulate.
ly = length(y);
% Create an FFT plot.
freq = [-Fs/2 : Fs/ly : Fs/2 - Fs/ly];
Syy = 10*log10(fftshift(abs(fft(y))));
plot(freq,Syy)
```

4 Figure 1						
File Edit	View Insert Tools	Desktop	Window	Help		v
40						
20.8						
0						
-20						
-40						
-60						
-80						
-100.						
$-120 \quad 1 \quad 10$						

See Also

fskdemod, pskmod, pskdemod, "Modulation"

Purpose Convert between parity-check and generator matrices

Syntax \quad| parmat $=$ gen2par $($ genmat $)$ |
| :--- |
| genmat $=$ gen2par $($ parmat $)$ |

Examples

The commands below convert the parity-check matrix for a Hamming code into the corresponding generator matrix and back again.

```
parmat = hammgen(3)
genmat = gen2par(parmat)
parmat2 = gen2par(genmat) % Ans should be the same as parmat above
```

The output is

See Also
cyclgen, hammgen, "Block Coding"

genqamdemod

Purpose General quadrature amplitude demodulation
Syntax $\quad z=$ genqamdemod $(y$, const $)$
Description Warning
This function is obsolete and may be removed in the future. We strongly recommend that you use modem. genqamdemod instead.
$z=$ genqamdemod(y, const) demodulates the complex envelope y of a quadrature amplitude modulated signal. The complex vector const specifies the signal mapping. If y is a matrix with multiple rows, the function processes the columns independently.

Examples
 The reference page for genqammod has an example that uses genqamdemod.

See Also genqammod, qammod, qamdemod, pammod, pamdemod, "Modulation"

Purpose

General quadrature amplitude modulation

Syntax

Description

Examples
$y=$ genqammod $(x$, const $)$

Warning

 strongly recommend that you use modem. genqammod instead.$y=$ genqammod (x, const) outputs the complex envelope y of the modulation of the message signal x using quadrature amplitude modulation. The message signal must consist of integers between 0 mapping. If x is a matrix with multiple rows, the function processes the columns independently.

The code below plots a signal constellation that has a hexagonal

This function is obsolete and may be removed in the future. We and length (const)-1. The complex vector const specifies the signal structure. It also uses genqammod and genqamdemod to modulate and demodulate a message [$\begin{array}{llll}3 & 8 & 5 & 10\end{array}$ 7] using this constellation.

```
% Describe hexagonal constellation.
```

% Describe hexagonal constellation.
inphase = [ll/2 1 1 1/2 1/2 2 2 5/2];
inphase = [ll/2 1 1 1/2 1/2 2 2 5/2];
quadr = [llllllllll}
quadr = [llllllllll}
inphase = [inphase;-inphase]; inphase = inphase(:);
inphase = [inphase;-inphase]; inphase = inphase(:);
quadr = [quadr;quadr]; quadr = quadr(:);
quadr = [quadr;quadr]; quadr = quadr(:);
const = inphase + j*quadr;
const = inphase + j*quadr;
% Plot constellation.
% Plot constellation.
h = scatterplot(const);
h = scatterplot(const);
% Modulate message using this constellation.
% Modulate message using this constellation.
x = [$$
\begin{array}{lllll}{3}&{5}&{10}&{7}\end{array}
$$]; % Message signal
x = [$$
\begin{array}{lllll}{3}&{5}&{10}&{7}\end{array}
$$]; % Message signal
y = genqammod(x,const);
y = genqammod(x,const);
z = genqamdemod(y,const); % Demodulate.
z = genqamdemod(y,const); % Demodulate.
% Plot modulated signal in same figure.
% Plot modulated signal in same figure.
hold on; scatterplot(y,1,0,'ro',h);

```
hold on; scatterplot(y,1,0,'ro',h);
```


Another example using this function is the Gray-coded constellation example in "Examples of Signal Constellation Plots".

See Also
genqamdemod, qammod, qamdemod, pammod, pamdemod, "Modulation"

Purpose Create Galois field array
Syntax $\quad x _g f=g f(x, m)$
x_gf = gf(x,m,prim_poly)
$x _g f=g f(x)$
$x _g f=g f(x, m)$ creates a Galois field array from the matrix x. The Galois field has $2^{\wedge} m$ elements, where m is an integer between 1 and 16. The elements of x must be integers between 0 and $2^{\wedge} m-1$. The output $\mathrm{x} _\mathrm{gf}$ is a variable that MATLAB recognizes as a Galois field array, rather than an array of integers. As a result, when you manipulate x_gf using operators or functions such as + or det, MATLAB works within the Galois field you have specified.

Note To learn how to manipulate x_gf using familiar MATLAB operators and functions, see "Galois Field Computations". To learn how the integers in x represent elements of $\mathrm{GF}\left(2^{\wedge} \mathrm{m}\right)$, see "How Integers Correspond to Galois Field Elements".
$x _g f=g f\left(x, m, p r i m _p o l y\right)$ is the same as the previous syntax, except it uses the primitive polynomial prim_poly to define the field. prim_poly is the integer representation of a primitive polynomial. For example, the number 41 represents the polynomial $D^{\wedge} 5+D^{\wedge} 2+1$ because the binary form of 37 is 100101 . For more information about the primitive polynomial, see "Specifying the Primitive Polynomial".
$x _g f=g f(x)$ creates a $G F(2)$ array from the matrix x. Each element of x must be 0 or 1 .

Default Primitive Polynomials

The table below lists the primitive polynomial that gf uses by default for each Galois field $\mathrm{GF}\left(2^{\wedge} \mathrm{m}\right)$. To use a different primitive polynomial, specify prim_poly as an input argument when you invoke gf.

\mathbf{m}	Default Primitive Polynomial	Integer Representation
1	$\mathrm{D}^{\wedge} 1$	3
2	$\mathrm{D}^{\wedge} 2+\mathrm{D}+1$	7
3	$\mathrm{D}^{\wedge} 3+\mathrm{D}+1$	11
4	$\mathrm{D}^{\wedge} 4+\mathrm{D}+1$	19
5	$\mathrm{D}^{\wedge} 5+\mathrm{D}^{\wedge} 2+1$	37
6	$\mathrm{D}^{\wedge} 6+\mathrm{D}+1$	67
7	$\mathrm{D}^{\wedge} 7+\mathrm{D}^{\wedge} 3+1$	137
8	$\mathrm{D}^{\wedge} 8+\mathrm{D}^{\wedge} 4+\mathrm{D}^{\wedge} 3+$ $\mathrm{D}^{\wedge} 2+1$	285
9	$\mathrm{D}^{\wedge} 9+\mathrm{D}^{\wedge} 4+1$	529
10	$\mathrm{D}^{\wedge} 10+\mathrm{D}^{\wedge} 3+1$	1033
11	$\mathrm{D}^{\wedge} 11+\mathrm{D}^{\wedge} 2+1$	2053
12	$\mathrm{D}^{\wedge} 12+\mathrm{D}^{\wedge} 6+\mathrm{D}^{\wedge} 4+$ $\mathrm{D}^{2}+1$	4179
13	$\mathrm{D}^{\wedge} 13+\mathrm{D}^{\wedge} 4+\mathrm{D}^{\wedge} 3+$ $\mathrm{D}^{2}+1$	8219
14	$\mathrm{D}^{\wedge} 14+\mathrm{D}^{\wedge} 10+\mathrm{D}^{\wedge} 6$ $+\mathrm{D}^{2}+1$	17475
15	$\mathrm{D}^{\wedge} 15+\mathrm{D}^{2}+1$	32771
16	$\mathrm{D}^{\wedge} 16+\mathrm{D}^{\wedge} 12+\mathrm{D}^{\wedge} 3$ $+\mathrm{D}^{2}+1$	69643

Examples For examples that use gf, see

- "Example: Creating Galois Field Variables"
- "Example: Representing a Primitive Element"
- Other sample code within "Galois Field Computations"
- The Galois field demonstration: type showdemo gfdemo.

See Also
gftable, list of functions and operators for Galois field computations, gfdemo, "Galois Field Computations"

Purpose
Add polynomials over Galois field
Syntax
$c=\operatorname{gfadd}(a, b)$
$c=\operatorname{gfadd}(a, b, p)$
$c=\operatorname{gfadd}(a, b, p, l e n)$
$c=\operatorname{gfadd}(a, b, f i e l d)$

Description

Note This function performs computations in $\mathrm{GF}\left(\mathrm{p}^{\mathrm{m}}\right)$ where p is prime. To work in $\mathrm{GF}\left(2^{\mathrm{m}}\right)$, apply the + operator to Galois arrays of equal size. For details, see "Example: Addition and Subtraction".
$c=\operatorname{gfadd}(\mathrm{a}, \mathrm{b})$ adds two GF(2) polynomials, a and b . If a and b are vectors of the same orientation but different lengths, then the shorter vector is zero-padded. If a and b are matrices they must be of the same size.
$c=\operatorname{gfadd}(a, b, p)$ adds two $G F(p)$ polynomials, where p is a prime number. a, b, and c are row vectors that give the coefficients of the corresponding polynomials in order of ascending powers. Each coefficient is between 0 and $p-1$. If a and b are matrices of the same size, the function treats each row independently.
$c=\operatorname{gfadd}(a, b, p, l e n)$ adds row vectors a and b as in the previous syntax, except that it returns a row vector of length len. The output c is a truncated or extended representation of the sum. If the row vector corresponding to the sum has fewer than len entries (including zeros), extra zeros are added at the end; if it has more than len entries, entries from the end are removed.
$\mathrm{c}=\mathrm{gfadd}(\mathrm{a}, \mathrm{b}, \mathrm{field})$ adds two $\mathrm{GF}\left(\mathrm{p}^{\mathrm{m}}\right)$ elements, where m is a positive integer. a and b are the exponential format of the two elements, relative to some primitive element of $\mathrm{GF}\left(\mathrm{p}^{\mathrm{m}}\right)$. field is the matrix listing all elements of $\mathrm{GF}\left(\mathrm{p}^{\mathrm{m}}\right)$, arranged relative to the same primitive element. c is the exponential format of the sum, relative to the same primitive element. See "Representing Elements of Galois Fields" for an
explanation of these formats. If a and b are matrices of the same size, the function treats each element independently.

Examples

In the code below, sum5 is the sum of $2+3 x+x^{2}$ and $4+2 x+3 x^{2}$ over GF(5), and linpart is the degree-one part of sum5.

```
sum5 = gfadd([[2 3 1],[4 2 3],5)
linpart = gfadd([2 3 1],[4 2 3],5,2)
```

The output is

```
sum5 =
    1 0 4
linpart =
    10
```

The code below shows that $\mathrm{A}^{2}+\mathrm{A}^{4}=\mathrm{A}^{1}$, where A is a root of the primitive polynomial $2+2 \mathrm{x}+\mathrm{x}^{2}$ for $\mathrm{GF}(9)$.

```
p = 3; m = 2;
prim_poly = [2 2 1];
field = gftuple([-1:p^m-2]',prim_poly,p);
g = gfadd(2,4,field)
```

The output is

```
g =
```

1
Other examples are in "Arithmetic in Galois Fields".

See Also

gfsub, gfconv, gfmul, gfdeconv, gfdiv, gftuple, "Galois Fields of Odd Characteristic" on page 1-13

Purpose Multiply polynomials over Galois field
Syntax $\quad c=\operatorname{gfconv}(a, b)$
$c=\operatorname{gfconv}(a, b, p)$
c = gfconv(a,b,field)

Description

Note This function performs computations in GF(p^{m}), where p is prime. To work in $\mathrm{GF}\left(2^{\mathrm{m}}\right)$, use the conv function with Galois arrays. For details, see "Multiplication and Division of Polynomials".

The gfconv function multiplies polynomials over a Galois field. (To multiply elements of a Galois field, use gfmul instead.) Algebraically, multiplying polynomials over a Galois field is equivalent to convolving vectors containing the polynomials' coefficients, where the convolution operation uses arithmetic over the same Galois field.
$c=\operatorname{gfconv}(a, b)$ multiplies two $G F(2)$ polynomials, a and b. The polynomial degree of the resulting $\mathrm{GF}(2)$ polynomial c equals the degree of a plus the degree of b.
$c=\operatorname{gfconv}(a, b, p)$ multiplies two $G F(p)$ polynomials, where p is a prime number. a, b, and c are row vectors that give the coefficients of the corresponding polynomials in order of ascending powers. Each coefficient is between 0 and $\mathrm{p}-1$.
$c=g f c o n v(a, b, f i e l d)$ multiplies two $G F\left(p^{m}\right)$ polynomials, where p is a prime number and m is a positive integer. a, b, and c are row vectors that list the exponential formats of the coefficients of the corresponding polynomials, in order of ascending powers. The exponential format is relative to some primitive element of $\mathrm{GF}\left(\mathrm{p}^{\mathrm{m}}\right)$. field is the matrix listing all elements of GF $\left(\mathrm{p}^{\mathrm{m}}\right)$, arranged relative to the same primitive element. See "Representing Elements of Galois Fields" for an explanation of these formats.

Examples The command below shows that

$$
\left(1+x+x^{4}\right)\left(x+x^{2}\right)=x+2 x^{2}+x^{3}+x^{5}+x^{6}
$$

over GF(3).

$$
\operatorname{gfc}=\operatorname{gfconv}\left(\left[\begin{array}{lllll}
1 & 1 & 0 & 0 & 1
\end{array}\right],\left[\begin{array}{lll}
0 & 1 & 1
\end{array}\right], 3\right)
$$

The output is

```
gfc =
```

0	1	2	1	0	1	1

The code below illustrates the identity

$$
\left(x^{r}+x^{s}\right)^{p}=x^{r p}+x^{s p}
$$

for the case in which $p=7, r=5$, and $s=3$. (The identity holds when p is any prime number, and r and s are positive integers.)

```
p = 7; r = 5; s = 3;
a = gfrepcov([r s]); % x^r + x^s
% Compute a^p over GF(p).
c = 1;
for ii = 1:p
    c = gfconv(c,a,p);
end;
% Check whether c = x^(rp) + x^(sp).
powers = [];
for ii = 1:length(c)
    if c(ii)~=0
        powers = [powers, ii];
    end;
end;
if (powers==[r*p+1 s*p+1] | powers==[s*p+1 r*p+1])
```

disp('The identity is proved for this case of r, s, and $p . ')$ end

See Also
gfdeconv, gfadd, gfsub, gfmul, gftuple, "Galois Fields of Odd Characteristic" on page 1-13

Purpose Produce cyclotomic cosets for Galois field
Syntax $\quad c=g f \operatorname{cosets}(m)$
c = gfcosets(m, p)

Description

Note This function performs computations in GF(p ${ }^{m}$), where p is prime. To work in $\mathrm{GF}\left(2^{\mathrm{m}}\right)$, use the cosets function.
$c=$ gfcosets(m) produces cyclotomic cosets $\bmod \left(2^{m}-1\right)$. Each row of the output GFCS contains one cyclotomic coset.
$c=$ gfcosets (m, p) produces the cyclotomic cosets for GF(p^m), where m is a positive integer and p is a prime number.
The output matrix c is structured so that each row represents one coset. The row represents the coset by giving the exponential format of the elements of the coset, relative to the default primitive polynomial for the field. For a description of exponential formats, see "Representing Elements of Galois Fields".

The first column contains the coset leaders. Because the lengths of cosets might vary, entries of NaN are used to fill the extra spaces when necessary to make c rectangular.
A cyclotomic coset is a set of elements that all satisfy the same minimal polynomial. For more details on cyclotomic cosets, see the works listed in "References" on page 2-288.

Examples The command below finds the cyclotomic cosets for GF(9).

$$
c=\operatorname{gfcosets}(2,3)
$$

The output is
c =
0 NaN3
2 6
4 NaN
$5 \quad 7$
The gfminpol function can check that the elements of, for example, the third row of c indeed belong in the same coset.

```
m = [gfminpol(2,2,3); gfminpol(6,2,3)] % Rows are identical.
```

The output is
$\mathrm{m}=$

2	0	1
2	0	1

See Also gfminpol, gfprimdf, gfroots, "Galois Fields of Odd Characteristic" on page 1-13
References
[1] Blahut, Richard E., Theory and Practice of Error Control Codes, Reading, MA, Addison-Wesley, 1983, p. 105.
[2] Lin, Shu, and Daniel J. Costello, Jr., Error Control Coding: Fundamentals and Applications, Englewood Cliffs, NJ, Prentice-Hall, 1983.

Purpose	Divide polynomials over Galois field
Syntax	[quot, remd] = gfdeconv(b,a)
	[quot, remd] = gfdeconv(b,a, p)
	[quot, remd] = gfdeconv(b,a,field)

Description

Note This function performs computations in $\mathrm{GF}\left(\mathrm{p}^{\mathrm{m}}\right)$, where p is prime. To work in $\mathrm{GF}\left(2^{\mathrm{m}}\right)$, use the deconv function with Galois arrays. For details, see "Multiplication and Division of Polynomials".

The gfdeconv function divides polynomials over a Galois field. (To divide elements of a Galois field, use gfdiv instead.) Algebraically, dividing polynomials over a Galois field is equivalent to deconvolving vectors containing the polynomials' coefficients, where the deconvolution operation uses arithmetic over the same Galois field.
[quot, remd] = gfdeconv(b,a) computes the quotient quot and remainder remd of the division of b by a in $G F(2)$.
[quot, remd] = gfdeconv(b,a,p) divides the polynomial b by the polynomial a over GF(p) and returns the quotient in quot and the remainder in remd. p is a prime number. b, a, quot, and remd are row vectors that give the coefficients of the corresponding polynomials in order of ascending powers. Each coefficient is between 0 and p-1.
[quot, remd] = gfdeconv(b,a,field) divides the polynomial b by the polynomial a over $\mathrm{GF}\left(\mathrm{p}^{\mathrm{m}}\right)$ and returns the quotient in quot and the remainder in remd. Here p is a prime number and m is a positive integer. b, a, quot, and remd are row vectors that list the exponential formats of the coefficients of the corresponding polynomials, in order of ascending powers. The exponential format is relative to some primitive element of $\mathrm{GF}\left(\mathrm{p}^{\mathrm{m}}\right)$. field is the matrix listing all elements of $\mathrm{GF}\left(\mathrm{p}^{\mathrm{m}}\right)$, arranged relative to the same primitive element. See "Representing Elements of Galois Fields" for an explanation of these formats.

gfdeconv

Examples The code below shows that

$$
\left(x+x^{3}+x^{4}\right) \div(1+x)=1+x^{3} \text { Remainder } 2
$$

in $\mathrm{GF}(3)$. It also checks the results of the division.

```
p = 3;
b = [0 0 1 0 1 1]; a = [11 1];
[quot, remd] = gfdeconv(b,a,p)
% Check the result.
bnew = gfadd(gfconv(quot,a,p),remd,p);
if isequal(bnew,b)
    disp('Correct.')
end;
```

The output is below.

```
quot =
    1 0
remd =
```

 2
 Correct.

Working over GF(3), the code below outputs those polynomials of the form $\mathrm{x}^{\mathrm{k}}-1(\mathrm{k}=2,3,4, \ldots, 8)$ that $1+\mathrm{x}^{2}$ divides evenly.

```
p = 3; m = 2;
a = [1 0 1]; % 1+x^2
for ii = 2:p^m-1
    b = gfrepcov(ii); % x^ii
    b(1) = p-1; % - 1+x^ii
    [quot, remd] = gfdeconv(b,a,p);
    % Display -1+x^ii if a divides it evenly.
    if remd==0
```

```
            multiple{ii}=b;
            gfpretty(b)
        end
end
```

The output is below.

$$
\begin{gathered}
2+x^{4} \\
2+x^{8}
\end{gathered}
$$

In light of the discussion in "Algorithm" on page 2-304 on the gfprimck reference page, along with the irreducibility of $1+x^{2}$ over GF(3), this output indicates that $1+x^{2}$ is not primitive for GF(9).

Algorithm

See Also gfconv, gfadd, gfsub, gfdiv, gftuple, "Galois Fields of Odd Characteristic" on page 1-13

Purpose Divide elements of Galois field
Syntax \quad quot $=\operatorname{gfdiv}(b, a)$
quot $=\operatorname{gfdiv}(b, a, p)$
quot $=\operatorname{gfdiv}(b, a, f i e l d)$

Description

Examples

Note This function performs computations in GF(p ${ }^{m}$), where p is prime. To work in $\operatorname{GF}\left(2^{\mathrm{m}}\right)$, apply the ./ operator to Galois arrays. For details, see "Example: Division".

The gfdiv function divides elements of a Galois field. (To divide polynomials over a Galois field, use gfdeconv instead.)
quot $=\operatorname{gfdiv}(\mathrm{b}, \mathrm{a})$ divides b by a in $\mathrm{GF}(2)$ element-by-element. a and b are scalars, vectors or matrices of the same size. Each entry in a and b represents an element of GF(2). The entries of a and b are either 0 or 1 .
quot $=\operatorname{gfdiv}(b, a, p)$ divides b by a in $\operatorname{GF}(p)$ and returns the quotient. p is a prime number. If a and b are matrices of the same size, the function treats each element independently. All entries of b, a, and quot are between 0 and $\mathrm{p}-1$.
quot $=\operatorname{gfdiv}(b, a, f i e l d)$ divides b by $a \operatorname{in} G\left(p^{m}\right)$ and returns the quotient. p is a prime number and m is a positive integer. If a and b are matrices of the same size, then the function treats each element independently. All entries of b, a, and quot are the exponential formats of elements of GF $\left(\mathrm{p}^{\mathrm{m}}\right)$ relative to some primitive element of $\mathrm{GF}\left(\mathrm{p}^{\mathrm{m}}\right)$. field is the matrix listing all elements of $\mathrm{GF}\left(\mathrm{p}^{\mathrm{m}}\right)$, arranged relative to the same primitive element. See "Representing Elements of Galois Fields" for an explanation of these formats.
In all cases, an attempt to divide by the zero element of the field results in a "quotient" of NaN.

The code below displays lists of multiplicative inverses in GF(5) and $\mathrm{GF}(25)$. It uses column vectors as inputs to gfdiv.

```
% Find inverses of nonzero elements of GF(5).
p = 5;
b = ones(p-1,1);
a = [1:p-1]';
quot1 = gfdiv(b,a,p);
disp('Inverses in GF(5):')
disp('element inverse')
disp([a, quot1])
% Find inverses of nonzero elements of GF(25).
m = 2;
field = gftuple([-1:p^m-2]',m,p);
b = zeros(p^m-1,1); % Numerator is zero since 1 = alpha^0.
a = [0:p^m-2]';
quot2 = gfdiv(b,a,field);
disp('Inverses in GF(25), expressed in EXPONENTIAL FORMAT with')
disp('respect to a root of the default primitive polynomial:')
disp('element inverse')
disp([a, quot2])
```

See Also
gfmul, gfdeconv, gfconv, gftuple, "Galois Fields of Odd Characteristic" on page 1-13

Purpose Filter data using polynomials over prime Galois field

```
Syntax
\(y=\) gffilter (b, \(a, x\) )
\(y=\) gffilter (b, \(a, x, p)\)
```


Description

Note This function performs computations in GF(p ${ }^{m}$), where p is prime. To work in $\mathrm{GF}\left(2^{\mathrm{m}}\right)$, use the filter function with Galois arrays. For details, see "Filtering".
$y=g f f i l t e r(b, a, x)$ filters the data in vector x with the filter described by vectors b and a. The vectors b, a and x must be in GF(2), that is, be binary and y is also in GF(2).
$y=\operatorname{gffilter}(b, a, x, p)$ filters the data x using the filter described by vectors a and b. y is the filtered data in $\operatorname{GF}(p)$. p is a prime number, and all entries of a and b are between 0 and $p-1$.

By definition of the filter, y solves the difference equation

$$
\begin{array}{r}
a(1) y(n)=b(1) x(n)+b(2) x(n-1)+b(3) x(n-2)+\ldots+b(B+1) x(n-B) \\
\\
-a(2) y(n-1)-a(3) y(n-2)-\ldots-a(A+1) y(n-A)
\end{array}
$$

where

- $A+1$ is the length of the vector a
- $B+1$ is the length of the vector b
- n varies between 1 and the length of the vector x.

The vector a represents the degree- n_{a} polynomial

$$
a(1)+a(2) x+a(3) x^{\wedge} 2+\ldots+a(A+1) x^{\wedge} A
$$

Examples

The impulse response of a particular filter is given in the code and diagram below.

```
b = [1 0 0 1 0 1 0 1];
a = [1 0 1 1];
y = gffilter(b,a,[1,zeros(1,19)]);
stem(y);
axis([0 20 -. 1 1.1])
```


See Also
gfconv, gfadd, filter, "Galois Fields of Odd Characteristic" on page 1-13

Purpose
Find particular solution of $\mathrm{Ax}=\mathrm{b}$ over prime Galois field

```
Syntax
x = gflineq(A, b)
\(x=\) gflineq(A,b,p)
[x,vld] = gflineq(...)
```


Description

Examples

Note This function performs computations in GF(p), where p is prime. To work in GF $\left(2^{\mathrm{m}}\right)$, apply the \backslash or / operator to Galois arrays. For details, see "Solving Linear Equations".
$x=\operatorname{gflineq}(A, b)$ outputs a particular solution of the linear equation $A x=b$ in $G F(2)$. The elements in a, b and x are either 0 or 1 . If the equation has no solution, then x is empty.
$x=\operatorname{gflineq}(A, b, p)$ returns a particular solution of the linear equation $A x=b$ over $G F(p)$, where p is a prime number. If A is a $k-b y-n$ matrix and b is a vector of length k, x is a vector of length n. Each entry of A, x, and b is an integer between 0 and $p-1$. If no solution exists, x is empty.
[$x, v l d]=$ gflineq(...) returns a flag vld that indicates the existence of a solution. If vld $=1$, the solution x exists and is valid; if vld $=0$, no solution exists.

The code below produces some valid solutions of a linear equation over GF(3).

```
A = [2 0 1;
    1 1 0;
    1 1 2];
% An example in which the solutions are valid
[x,vld] = gflineq(A,[1;0;0],3)
```

The output is below.

$$
x=
$$

```
        2
        1
        0
vld =
    1
```

By contrast, the command below finds that the linear equation has no solutions.

```
[x2,vld2] = gflineq(zeros(3,3),[2;0;0],3)
```

The output is below.

```
This linear equation has no solution.
x2 =
```

 []
 vld2 =
0

Algorithm
See Also
gflineq uses Gaussian elimination.
gfadd, gfdiv, gfroots, gfrank, gfconv, conv, "Galois Fields of Odd Characteristic" on page 1-13

Purpose Find minimal polynomial of Galois field element
Syntax
pol $=\operatorname{gfminpol}(k, m)$
pol $=$ gfminpol(k,m,p)
pol = gfminpol(k, prim_poly,p)

Description

Note This function performs computations in GF(p ${ }^{m}$), where p is prime. To work in $\operatorname{GF}\left(2^{\mathrm{m}}\right)$, use the minpol function with Galois arrays. For details, see "Minimal Polynomials".
pol $=$ gfminpol (k, m) produces a minimal polynomial for each entry in k. k must be either a scalar or a column vector. Each entry in k represents an element of $\mathrm{GF}\left(2^{\mathrm{m}}\right)$ in exponential format. That is, k represents alpha^ ${ }^{\wedge}$, where alpha is a primitive element in $\operatorname{GF}\left(2^{\mathrm{m}}\right)$. The i th row of pol represents the minimal polynomial of $k(i)$. The coefficients of the minimal polynomial are in the base field GF(2) and listed in order of ascending exponents.
pol $=$ gfminpol (k, m, p) finds the minimal polynomial of A^{k} over $\mathrm{GF}(\mathrm{p})$, where p is a prime number, m is an integer greater than 1 , and A is a root of the default primitive polynomial for GF ($\mathrm{p}^{\wedge} m$). The format of the output is as follows:

- If k is a nonnegative integer, pol is a row vector that gives the coefficients of the minimal polynomial in order of ascending powers.
- If k is a vector of length len all of whose entries are nonnegative integers, pol is a matrix having len rows; the rth row of pol gives the coefficients of the minimal polynomial of $\mathrm{A}^{\mathrm{k}(\mathrm{r})}$ in order of ascending powers.
pol = gfminpol(k,prim_poly, p) is the same as the first syntax listed, except that A is a root of the primitive polynomial for $G F\left(p^{m}\right)$ specified by prim_poly. prim_poly is a row vector that gives the coefficients of the degree-m primitive polynomial in order of ascending powers.

Examples The syntax $\operatorname{gfminpol}(k, m, p)$ is used in the sample code in "Characterization of Polynomials".

See Also
gfprimdf, gfcosets, gfroots, "Galois Fields of Odd Characteristic" on page 1-13

Purpose Multiply elements of Galois field

$$
\begin{array}{ll}
\text { Syntax } & c=\operatorname{gfmul}(a, b, p) \\
& c=\operatorname{gfmul}(a, b, f i e l d)
\end{array}
$$

Description

Examples "Arithmetic in Galois Fields" contains examples. Also, the code below

 shows that$$
A^{2} \cdot A^{4}=A^{6}
$$

where A is a root of the primitive polynomial $2+2 \mathrm{x}+\mathrm{x}^{2}$ for $\mathrm{GF}(9)$.

```
p = 3; m = 2;
prim_poly = [2 2 1];
field = gftuple([-1:p^m-2]',prim_poly,p);
```

$$
a=\operatorname{gfmul}(2,4, f i e l d)
$$

The output is

$$
\mathrm{a}=
$$

6
gfdiv, gfdeconv, gfadd, gfsub, gftuple, "Galois Fields of Odd Characteristic" on page 1-13

Purpose Polynomial in traditional format

```
Syntax
gfpretty(a) gfpretty(a,st) gfpretty(a,st,n)
```

Description
gfpretty (a) displays a polynomial in a traditional format, using X as the variable and the entries of the row vector a as the coefficients in order of ascending powers. The polynomial is displayed in order of ascending powers. Terms having a zero coefficient are not displayed.
gfpretty (a,st) is the same as the first syntax listed, except that the content of the string st is used as the variable instead of X.
gfpretty (a,st,n) is the same as the first syntax listed, except that the content of the string st is used as the variable instead of X, and each line of the display has width n instead of the default value of 79 .

Note For all syntaxes: If you do not use a fixed-width font, the spacing in the display might not look correct.

Examples

The code below displays statements about the elements of GF(81).

```
p = 3; m = 4;
ii = randint(1,1,[1, p^m-2]); % Random exponent for prim element
primpolys = gfprimfd(m,'all',p);
[rows, cols] = size(primpolys);
jj = randint(1,1,[1,rows]); % Random primitive polynomial
disp('If A is a root of the primitive polynomial')
gfpretty(primpolys(jj,:)) % Polynomial in X
disp('then the element')
gfpretty([zeros(1,ii),1],'A') % The polynomial A^ii
disp('can also be expressed as')
gfpretty(gftuple(ii,m,p),'A') % Polynomial in A
```

Below is a sample of the output.

If A is a root of the primitive polynomial

$$
2+2 x^{3}+x^{4}
$$

then the element

22
A
can also be expressed as

$$
2+A^{2}+A^{3}
$$

See Also
gftuple, gfprimdf, "Galois Fields of Odd Characteristic" on page 1-13

gfprimck

```
Purpose Check whether polynomial over Galois field is primitive
Syntax \(\quad\) ck \(=\) gfprimck \((a)\)
ck = gfprimck(a,p)
```


Description

Examples

"Characterization of Polynomials" contains examples.

Algorithm

See Also

Note This function performs computations in GF(p^{m}), where p is prime. If you are working in $\operatorname{GF}\left(2^{m}\right)$, use the isprimitive function. For details, see "Finding Primitive Polynomials".
ck = gfprimck(a) checks whether the degree-m GF(2) polynomial a is a primitive polynomial for $\mathrm{GF}\left(2^{\mathrm{m}}\right)$, where $\mathrm{m}=$ length(a) -1 . The output ck is as follows:

- - 1 if a is not an irreducible polynomial
- 0 if a is irreducible but not a primitive polynomial for $G F\left(p^{m}\right)$
- 1 if a is a primitive polynomial for $\mathrm{GF}\left(\mathrm{p}^{\mathrm{m}}\right)$
ck = gfprimck(a, p) checks whether the degree-m GF(P) polynomial a is a primitive polynomial for $\mathrm{GF}\left(\mathrm{p}^{\mathrm{m}}\right)$. p is a prime number.

This function considers the zero polynomial to be "not irreducible" and considers all polynomials of degree zero or one to be primitive.

An irreducible polynomial over GF(p) of degree at least 2 is primitive if and only if it does not divide $-1+\mathrm{x}^{\mathrm{k}}$ for any positive integer k smaller than $\mathrm{p}^{\mathrm{m}}-1$.
gfprimfd, gfprimdf, gftuple, gfminpol, gfadd, "Galois Fields of Odd Characteristic" on page 1-13

References
[1] Clark, George C. Jr., and J. Bibb Cain, Error-Correction Coding for Digital Communications, New York, Plenum, 1981.
[2] Krogsgaard, K., and T., Karp, Fast Identification of Primitive Polynomials over Galois Fields: Results from a Course Project, ICASSP 2005, Philadelphia, PA, 2004.

gfprimdf

Purpose Provide default primitive polynomials for Galois field

Syntax
pol $=$ gfprimdf(m)
pol $=\operatorname{gfprimdf}(m, p)$

Description

Note This function performs computations in GF(p ${ }^{m}$), where p is prime. To work in $\operatorname{GF}\left(2^{\mathrm{m}}\right)$, use the primpoly function. For details, see "Finding Primitive Polynomials".
pol = gfprimdf(m) outputs the default primitive polynomial pol in $\mathrm{GF}\left(2^{\mathrm{m}}\right)$.
pol $=\operatorname{gfprimdf}(m, p)$ returns the row vector that gives the coefficients, in order of ascending powers, of the default primitive polynomial for $\mathrm{GF}\left(\mathrm{p}^{\mathrm{m}}\right)$. m is a positive integer and p is a prime number.

Examples The command below shows that $2+x+x^{2}$ is the default primitive

 polynomial for GF(5^{2}).```
pol = gfprimdf(2,5)
pol =
 2 1 1
```

The code below displays the default primitive polynomial for each of the fields $\mathrm{GF}\left(3^{\mathrm{m}}\right)$, where m ranges between 3 and 5 .

```
for m = 3:5
 gfpretty(gfprimdf(m,3))
end
```

The output is below.

$$
\begin{aligned}
& 2+x+x^{4} \\
& 1+2 x+x^{5}
\end{aligned}
$$

See Also
gfprimck, gfprimfd, gftuple, gfminpol, "Galois Fields of Odd Characteristic" on page 1-13

## gfprimfd

Purpose Find primitive polynomials for Galois field
Syntax $\quad$ pol $=\operatorname{gfprimfd}(m, o p t, p)$
Description
Note This function performs computations in $\mathrm{GF}\left(\mathrm{p}^{\mathrm{m}}\right)$, where p is prime. To work in $\operatorname{GF}\left(2^{\mathrm{m}}\right)$, use the primpoly function. For details, see "Finding Primitive Polynomials".

- If $m=1$, pol = [11].
- A polynomial is represented as a row containing the coefficients in order of ascending powers.
pol = gfprimfd(m,opt, $p$ ) searches for one or more primitive polynomials for $G F\left(p^{\wedge} m\right)$, where $p$ is a prime number and $m$ is a positive integer. If $m=1$, pol $=\left[\begin{array}{ll}11\end{array}\right]$. If $m>1$, the output pol depends on the argument opt as shown in the table below. Each polynomial is represented in pol as a row containing the coefficients in order of ascending powers.

| opt | Significance of pol | Format of pol |
| :--- | :--- | :--- |
| 'min' | One primitive <br> polynomial for <br> GF(p^m) having the <br> smallest possible <br> number of nonzero <br> terms | The row vector <br> representing the <br> polynomial |
| 'max' | One primitive <br> polynomial for <br> GF(p^m) having the <br> greatest possible <br> number of nonzero <br> terms | The row vector <br> representing the <br> polynomial |


| opt | Significance of pol | Format of pol |
| :--- | :--- | :--- |
| 'all' | All primitive <br> polynomials for <br> GF(p^m) | A matrix, each row of <br> which represents one <br> such polynomial |
| A positive integer | All primitive <br> polynomials for <br> GF(p^m) that have <br> opt nonzero terms | A matrix, each row of <br> which represents one <br> such polynomial |

## Examples

The code below seeks primitive polynomials for GF(81) having various other properties. Notice that fourterms is empty because no primitive polynomial for GF(81) has exactly four nonzero terms. Also notice that fewterms represents a single polynomial having three terms, while threeterms represents all of the three-term primitive polynomials for GF(81).

```
p = 3; m = 4; % Work in GF(81).
fewterms = gfprimfd(m,'min',p)
threeterms = gfprimfd(m,3,p)
fourterms = gfprimfd(m,4,p)
```

The output is below.

| 2 | 1 | 0 | 0 | 1 |
| :---: | :---: | :---: | :---: | :---: |
| threeterms | $=$ |  |  |  |
| 2 | 1 | 0 | 0 | 1 |
| 2 | 2 | 0 | 0 | 1 |
| 2 | 0 | 0 | 1 | 1 |
| 2 | 0 | 0 | 2 | 1 |

```
No primitive polynomial satisfies the given constraints.
fourterms =
```


## []

Algorithm

See Also
gfprimfd tests for primitivity using gfprimck. If opt is 'min', 'max', or omitted, polynomials are constructed by converting decimal integers to base $p$. Based on the decimal ordering, gfprimfd returns the first polynomial it finds that satisfies the appropriate conditions.
gfprimck, gfprimdf, gftuple, gfminpol, "Galois Fields of Odd Characteristic" on page 1-13

## Purpose

Compute rank of matrix over Galois field
Syntax $\quad$ rk $=\operatorname{gfrank}(A, p)$
Description
Note This function performs computations in $\mathrm{GF}\left(\mathrm{p}^{\mathrm{m}}\right)$ where p is prime. If you are working in $\mathrm{GF}\left(2^{\mathrm{m}}\right)$, use the rank function with Galois arrays. For details, see "Computing Ranks".
$r k=\operatorname{gfrank}(A, p)$ calculates the rank of the matrix $A$ in $G F(p)$, where $p$ is a prime number.

## Algorithm

gfrank uses an algorithm similar to Gaussian elimination.
Examples In the code below, gfrank says that the matrix $A$ has less than full rank. This conclusion makes sense because the determinant of $A$ is zero $\bmod p$.

```
A = [\begin{array}{lll}{1}&{0}&{1;}\end{array}]
 2 1 0;
 0 1 1];
p = 3;
det_a = det(A); % Ordinary determinant of A
detmodp = rem(det(A),p); % Determinant mod p
rankp = gfrank(A,p);
disp(['Determinant = ',num2str(det_a)])
disp(['Determinant mod p is ',num2str(detmodp)])
disp(['Rank over GF(p) is ',num2str(rankp)])
```

The output is below.

```
Determinant = 3
Determinant mod p is 0
Rank over GF(p) is 2
```

Purpose Convert one binary polynomial representation to another

## Syntax <br> polystandard = gfrepcov(poly2)

Description Two logical ways to represent polynomials over GF(2) are listed below.

$$
\begin{gathered}
1\left[A \_0 \text { A_1 A_2 } \ldots \quad\right. \text { A_(m-1)] represents the polynomial } \\
\text { A_0+A_1x+A_2} x^{2}+\cdots+\text { A_(m-1) } x^{m-1}
\end{gathered}
$$

Each entry A_k is either one or zero.
$2\left[A \_0\right.$ A_1 A_2 ... A_(m-1)] represents the polynomial

$$
x^{\mathrm{A} \_0}+x^{\mathrm{A} \_1}+x^{\mathrm{A} \_2}+\cdots+x^{\mathrm{A} \_(\mathrm{m}-1)}
$$

Each entry A_k is a nonnegative integer. All entries must be distinct.
Format $\mathbf{1}$ is the standard form used by the Galois field functions in this toolbox, but there are some cases in which format $\mathbf{2}$ is more convenient. polystandard $=$ gfrepcov(poly2) converts from the second format to the first, for polynomials of degree at least 2 . poly2 and polystandard are row vectors. The entries of poly2 are distinct integers, and at least one entry must exceed 1 . Each entry of polystandard is either 0 or 1 .

Note If poly2 is a binary row vector, gfrepcov assumes that it is already in Format 1 above and returns it unaltered.

## Examples

The command below converts the representation format of the polynomial $1+x^{2}+x^{5}$.

$$
\text { polystandard }=\text { gfrepcov([lll } 0<2 \text { 5 }])
$$

```
polystandard =
 1 0
```

See Also gfpretty, "Galois Fields of Odd Characteristic" on page 1-13

Purpose Find roots of polynomial over prime Galois field
Syntax $\quad \begin{aligned} & r t=\operatorname{gfroots}(f, m, p) \\ & r t=\operatorname{gfroots}\left(f, p r i m \_p o l y, p\right) \\ & {\left[r t, r t \_t u p l e\right]=g f r o o t s(\ldots) } \\ & {\left[r t, r t \_t u p l e, f i e l d\right]=\operatorname{gfoots}(\ldots) }\end{aligned}$

## Description

Note This function performs computations in GF $\left(\mathrm{p}^{\mathrm{m}}\right)$, where p is prime. To work in $\mathrm{GF}\left(2^{\mathrm{m}}\right)$, use the roots function with Galois arrays. For details, see "Roots of Polynomials".

For all syntaxes, $f$ is a row vector that gives the coefficients, in order of ascending powers, of a degree-d polynomial.

Note gfroots lists each root exactly once, ignoring multiplicities of roots.
$r t=g f r o o t s(f, m, p)$ finds roots in $G F\left(p^{\wedge} m\right)$ of the polynomial that $f$ represents. $r t$ is a column vector each of whose entries is the exponential format of a root. The exponential format is relative to a root of the default primitive polynomial for GF( $\left.\mathrm{p}^{\wedge} \mathrm{m}\right)$.
rt = gfroots(f,prim_poly,p) finds roots in $\mathrm{GF}\left(\mathrm{p}^{m}\right)$ of the polynomial that $f$ represents. $r t$ is a column vector each of whose entries is the exponential format of a root. The exponential format is relative to a root of the degree-m primitive polynomial for $\mathrm{GF}\left(\mathrm{p}^{m}\right)$ that prim_poly represents.
[rt,rt_tuple] = gfroots(...) returns an additional matrix $r t$ tuple, whose kth row is the polynomial format of the root $r t(k)$. The polynomial and exponential formats are both relative to the same primitive element.
[rt,rt_tuple,field] = gfroots(...) returns additional matrices $r t \_t u p l e$ and field. rt_tuple is described in the preceding paragraph. field gives the list of elements of the extension field. The list of elements, the polynomial format, and the exponential format are all relative to the same primitive element.

Note For a description of the various formats that gfroots uses, see "Representing Elements of Galois Fields".

## Examples

See Also
"Roots of Polynomials" contains a description and example of the use of gfroots.

The code below finds the polynomial format of the roots of the primitive polynomial $2+x^{3}+x^{4}$ for $G F(81)$. It then displays the roots in traditional form as polynomials in alph. (The output is omitted here.) Because prim_poly is both the primitive polynomial and the polynomial whose roots are sought, alph itself is a root.

```
p = 3; m = 4;
prim_poly = [2 0 0 1 1]; % A primitive polynomial for GF(81)
f = prim_poly; % Find roots of the primitive polynomial.
[rt,rt_tuple] = gfroots(f,prim_poly,p);
% Display roots as polynomials in alpha.
for ii = 1:length(rt_tuple)
 gfpretty(rt_tuple(ii,:),'alpha')
end
```

gfprimdf, "Galois Fields of Odd Characteristic" on page 1-13

Purpose Subtract polynomials over Galois field

Syntax $\quad$| $c$ | $=\operatorname{gfsub}(a, b, p)$ |
| ---: | :--- |
| $c$ | $=\operatorname{gfsub}(a, b, p, l e n)$ |
| $c$ | $=\operatorname{gfsub}(a, b, f i e l d)$ |

## Description

Note This function performs computations in GF( $p^{m}$ ), where $p$ is prime. To work in $\mathrm{GF}\left(2^{\mathrm{m}}\right)$, apply the - operator to Galois arrays of equal size. For details, see "Example: Addition and Subtraction".
$c=\operatorname{gfsub}(a, b, p)$ calculates a minus $b$, where $a$ and $b$ represent polynomials over $\mathrm{GF}(\mathrm{p})$ and p is a prime number. $a, b$, and $c$ are row vectors that give the coefficients of the corresponding polynomials in order of ascending powers. Each coefficient is between 0 and p-1. If $a$ and $b$ are matrices of the same size, the function treats each row independently.
$c=$ gfsub(a,b,p,len) subtracts row vectors as in the syntax above, except that it returns a row vector of length len. The output c is a truncated or extended representation of the answer. If the row vector corresponding to the answer has fewer than len entries (including zeros), extra zeros are added at the end; if it has more than len entries, entries from the end are removed.
$c=g f s u b(a, b, f i e l d)$ calculates a minus $b$, where $a$ and $b$ are the exponential format of two elements of $\mathrm{GF}\left(\mathrm{p}^{\mathrm{m}}\right)$, relative to some primitive element of $\mathrm{GF}\left(\mathrm{p}^{\mathrm{m}}\right)$. p is a prime number and m is a positive integer. field is the matrix listing all elements of $\mathrm{GF}\left(\mathrm{p}^{m}\right)$, arranged relative to the same primitive element. c is the exponential format of the answer, relative to the same primitive element. See "Representing Elements of Galois Fields" for an explanation of these formats. If a and $b$ are matrices of the same size, the function treats each element independently.

## Examples

In the code below, differ is the difference of $2+3 x+x^{2}$ and $4+2 x+3 x^{2}$ over GF(5), and linpart is the degree-one part of differ.

```
differ = gfsub([2 3 1],[4 2 3],5)
linpart = gfsub([2 3 1],[4 2 3],5,2)
```

The output is

```
differ =
 3 1 3
linpart =
 3 1
```

The code below shows that $A^{2}-A^{4}=A^{7}$, where $A$ is a root of the primitive polynomial $2+2 x+x^{2}$ for GF(9).

```
p = 3; m = 2;
prim_poly = [2 2 1];
field = gftuple([-1:p^m-2]',prim_poly,p);
d = gfsub(2,4,field)
```

The output is
$\mathrm{d}=$

## 7

See Also
gfadd, gfconv, gfmul, gfdeconv, gfdiv, gftuple, "Galois Fields of Odd Characteristic" on page 1-13

# Purpose Generate file to accelerate Galois field computations 

## Syntax gftable(m,prim_poly);

Description
gftable(m, prim_poly) generates a file that can help accelerate computations in the field $\mathrm{GF}\left(2^{\wedge} \mathrm{m}\right)$ as described by the nondefault primitive polynomial prim_poly. The integer $m$ is between 1 and 16 . The integer prim_poly represents a primitive polynomial for GF( $2^{\wedge} \mathrm{m}$ ) using the format described in "Specifying the Primitive Polynomial". The function places the file, called userGftable.mat, in your current working directory. If necessary, the function overwrites any writable existing version of the file.

Note If prim_poly is the default primitive polynomial for GF(2^m) listed in the table on the gf reference page, this function has no effect. A MAT-file in your MATLAB installation already includes information that facilitates computations with respect to the default primitive polynomial.

## Examples

## See Also

gf, "Speed and Nondefault Primitive Polynomials"

## Purpose Minimize length of polynomial representation

## Syntax <br> c = gftrunc(a)

Description $\quad c=$ gftrunc(a) truncates a row vector, $a$, that gives the coefficients of a $\mathrm{GF}(\mathrm{p})$ polynomial in order of ascending powers. If $\mathrm{a}(\mathrm{k})=0$ whenever $\mathrm{k}>\mathrm{d}+1$, the polynomial has degree d . The row vector c omits these high-order zeros and thus has length $\mathrm{d}+1$.

Examples In the code below, zeros are removed from the end, but not from the beginning or middle, of the row-vector representation of $x^{2}+2 x^{3}+3 x^{4}+4 x^{7}+5 x^{8}$.
$c=$ gftrunc ([0 00122300045000$)$
c =

| 0 | 0 | 1 | 2 | 3 | 0 | 0 | 4 | 5 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

See Also gfadd, gfsub, gfconv, gfdeconv, gftuple, "Galois Fields of Odd Characteristic" on page 1-13

Purpose Simplify or convert Galois field element formatting

```
Syntax tp = gftuple(a,m)
tp = gftuple(a,prim_poly)
tp = gftuple(a,m,p)
tp = gftuple(a,prim_poly,p)
tp = gftuple(a,prim_poly,p,prim_ck)
[tp,expform] = gftuple(...)
```


## Description

Note This function performs computations in $\mathrm{GF}\left(\mathrm{p}^{\mathrm{m}}\right)$, where p is prime. To perform equivalent computations in $\mathrm{GF}\left(2^{\mathrm{m}}\right)$, apply the.$^{\wedge}$ operator and the $\log$ function to Galois arrays. For more information, see "Example: Exponentiation" and "Example: Elementwise Logarithm".

## For All Syntaxes

gftuple serves to simplify the polynomial or exponential format of Galois field elements, or to convert from one format to another. For an explanation of the formats that gftuple uses, see "Representing Elements of Galois Fields".

In this discussion, the format of an element of $\mathrm{GF}\left(\mathrm{p}^{\mathrm{m}}\right)$ is called "simplest" if all exponents of the primitive element are

- Between 0 and m-1 for the polynomial format
- Either - Inf, or between 0 and $\mathrm{p}^{\mathrm{m}-2}$, for the exponential format

For all syntaxes, a is a matrix, each row of which represents an element of a Galois field. The format of a determines how MATLAB interprets it:

- If a is a column of integers, MATLAB interprets each row as an exponential format of an element. Negative integers are equivalent to - Inf in that they all represent the zero element of the field.
- If a has more than one column, MATLAB interprets each row as a polynomial format of an element. (Each entry of a must be an integer between 0 and $\mathrm{p}-1$.)

The exponential or polynomial formats mentioned above are all relative to a primitive element specified by the second input argument. The second argument is described below.

## For Specific Syntaxes

$\mathrm{tp}=\mathrm{gftuple}(\mathrm{a}, \mathrm{m})$ returns the simplest polynomial format of the elements that a represents, where the kth row of tp corresponds to the kth row of a. The formats are relative to a root of the default primitive polynomial for $\mathrm{GF}\left(2^{\wedge} \mathrm{m}\right)$, where m is a positive integer.
tp = gftuple(a,prim_poly) is the same as the syntax above, except that prim_poly is a row vector that lists the coefficients of a degree $m$ primitive polynomial for $\mathrm{GF}\left(2^{\wedge} \mathrm{m}\right)$ in order of ascending exponents.
$t p=g f t u p l e(a, m, p)$ is the same as $t p=g f t u p l e(a, m)$ except that 2 is replaced by a prime number $p$.
tp = gftuple(a,prim_poly, p) is the same as tp = gftuple(a,prim_poly) except that 2 is replaced by a prime number $p$.
tp = gftuple(a,prim_poly, p,prim_ck) is the same as tp = gftuple(a, prim_poly, p) except that gftuple checks whether prim_poly represents a polynomial that is indeed primitive. If not, then gftuple generates an error and $t p$ is not returned. The input argument prim_ck can be any number or string; only its existence matters.
[tp,expform] = gftuple(...) returns the additional matrix expform. The kth row of expform is the simplest exponential format of the element that the kth row of a represents. All other features are as described in earlier parts of this "Description" section, depending on the input arguments.

## Examples

Some examples are in these subsections of "Galois Fields of Odd Characteristic" on page 1-13

## gftuple

- "List of All Elements of a Galois Field" (end of section)
- "Converting to Simplest Polynomial Format"
- "Converting to Simplest Polynomial Format"

As another example, the gftuple command below generates a list of elements of $\mathrm{GF}\left(\mathrm{p}^{\wedge} \mathrm{m}\right)$, arranged relative to a root of the default primitive polynomial. Some functions in this toolbox use such a list as an input argument.

```
p = 5; % Or any prime number
m = 4; % Or any positive integer
field = gftuple([-1:p^m-2]',m,p);
```

Finally, the two commands below illustrate the influence of the shape of the input matrix. In the first command, a column vector is treated as a sequence of elements expressed in exponential format. In the second command, a row vector is treated as a single element expressed in polynomial format.

```
tp1 = gftuple([0; 1],3,3)
tp2 = gftuple([0, 0, 0, 1],3,3)
```

The output is below.

```
tp1 =
 1 0}0
 0 1 0
tp2 =
```

    210
    The outputs reflect that, according to the default primitive polynomial for $\mathrm{GF}\left(3^{3}\right)$, the relations below are true.

$$
\begin{aligned}
& \alpha^{0}=1+0 \alpha+0 \alpha^{2} \\
& \alpha^{1}=0+1 \alpha+0 \alpha^{2} \\
& 0+0 \alpha+0 \alpha^{2}+\alpha^{3}=2+\alpha+0 \alpha^{2}
\end{aligned}
$$

## Algorithm

gftuple uses recursive callbacks to determine the exponential format.
gfadd, gfmul, gfconv, gfdiv, gfdeconv, gfprimdf, "Galois Fields of Odd Characteristic" on page 1-13

Purpose Calculate minimum distance of linear block code

```
Syntax \(\quad\) wt \(=\) gfweight (genmat)
```

wt = gfweight(genmat,'gen')

```
wt = gfweight(genmat,'gen')
wt = gfweight(parmat,'par')
wt = gfweight(parmat,'par')
wt = gfweight(genpoly,n)
```

```
wt = gfweight(genpoly,n)
```

```

\section*{Description}

\section*{Examples}

The minimum distance, or minimum weight, of a linear block code is defined as the smallest positive number of nonzero entries in any n -tuple that is a codeword.
wt = gfweight (genmat) returns the minimum distance of the linear block code whose generator matrix is genmat.
wt = gfweight(genmat, 'gen') returns the minimum distance of the linear block code whose generator matrix is genmat.
wt = gfweight(parmat, 'par') returns the minimum distance of the linear block code whose parity-check matrix is parmat.
wt = gfweight(genpoly, \(n\)) returns the minimum distance of the cyclic code whose codeword length is n and whose generator polynomial is represented by genpoly. genpoly is a row vector that gives the coefficients of the generator polynomial in order of ascending powers.

The commands below illustrate three different ways to compute the minimum distance of a \((7,4)\) cyclic code.
```

n = 7;
% Generator polynomial of (7,4) cyclic code
genpoly = cyclpoly(n,4);
[parmat, genmat] = cyclgen(n,genpoly);
wts = [gfweight(genmat,'gen'),gfweight(parmat,'par'),...
gfweight(genpoly,n)]

```

The output is

\section*{wts =}

33

See Also
hammgen, cyclpoly, bchgenpoly, "Block Coding"
```

Purpose Convert Gray-encoded positive integers to corresponding Gray-decoded integers

```
```

Syntax

```
Syntax
y = gray2bin(x,modulation, M)
y = gray2bin(x,modulation, M)
[y,map] = gray2bin(x,modulation,M)
[y,map] = gray2bin(x,modulation,M)
\(y=\) gray2bin(x,modulation, \(M\)) generates a Gray-decoded output vector or matrix y with the same dimensions as its input parameter \(\mathrm{x} . \mathrm{x}\) can be a scalar, vector, or matrix. modulation is the modulation type and must be a string equal to 'qam', 'pam', 'fsk', 'dpsk', or 'psk'. M is the modulation order that can be an integer power of 2 .
[y,map] = gray2bin(x,modulation, M) generates a Gray-decoded output \(y\) with its respective Gray-encoded constellation map, map.
You can use map output to label a Gray-encoded constellation. The map output gives the Gray encoded labels for the corresponding modulation. See the example below.
```

Note If you are converting binary coded data to Gray-coded data and modulating the result immediately afterwards, you should use the appropriate modulation object or function with the 'Gray ' option, instead of BIN2GRAY.

## Examples

```
% To Gray decode a vector x with a 16-QAM Gray encoded
% constellation and return its map, use:
x=randint(1,100,16);
[y,map] = gray2bin(x,'qam',16);
% Obtain the symbols for 16-QAM
hMod = modem.qammod('M', 16);
symbols = hMod.Constellation;
% Plot the constellation
scatterplot(symbols);
set(get(gca,'Children'),'Marker','d','MarkerFaceColor','auto');
hold on;
```

```
% Label the constellation points according
% to the Gray mapping
for jj=1:16
 text(real(symbols(jj))-0.15,imag(symbols(jj))+0.15,...
 dec2base(map(jj),2,4));
end
set(gca,'yTick',(-4:2:4),'xTick',(-4:2:4),...
 'XLim',[-4 4],'YLim',...
 [-4 4],'Box','on','YGrid','on', 'XGrid','on');
```

The example code generates the following plot, which shows the 16 QAM constellation with Gray-encoded labeling.


## See Also <br> bin2gray

Purpose
Produce parity-check and generator matrices for Hamming code
Syntax
$\mathrm{h}=$ hammgen (m)
$\mathrm{h}=$ hammgen(m,pol)
[h,g] = hammgen(...)
[h,g,n,k] = hammgen(...)

## Description

For all syntaxes, the codeword length is $n$. $n$ has the form $2^{\mathrm{m}}-1$ for some positive integer $m$ greater than or equal to 3 . The message length, $k$, has the form $n-m$.
$\mathrm{h}=$ hammgen ( m ) produces an $m$-by-n parity-check matrix for a Hamming code having codeword length $n=2^{\wedge} m-1$. The input $m$ is a positive integer greater than or equal to 3 . The message length of the code is $\mathrm{n}-\mathrm{m}$. The binary primitive polynomial used to produce the Hamming code is the default primitive polynomial for $\mathrm{GF}\left(2^{\wedge} \mathrm{m}\right)$, represented by gfprimdf(m).
$\mathrm{h}=$ hammgen ( $\mathrm{m}, \mathrm{pol}$ ) produces an m-by-n parity-check matrix for a Hamming code having codeword length $n=2^{\wedge} m-1$. The input $m$ is a positive integer greater than or equal to 3 . The message length of the code is n-m. pol is a row vector that gives the coefficients, in order of ascending powers, of the binary primitive polynomial for $\mathrm{GF}\left(2^{\wedge} \mathrm{m}\right)$ that is used to produce the Hamming code. hammgen produces an error if pol represents a polynomial that is not, in fact, primitive.
$[\mathrm{h}, \mathrm{g}]=$ hammgen (...) is the same as $\mathrm{h}=$ hammgen(...) except that it also produces the k -by-n generator matrix g that corresponds to the parity-check matrix $h$. $k$, the message length, equals $n-m$, or $2 \wedge m-1-m$.
$[h, g, n, k]=$ hammgen(...) is the same as $[h, g]=$ hammgen(...) except that it also returns the codeword length n and the message length k .

Note If your value of $m$ is less than 25 and if your primitive polynomial is the default primitive polynomial for $\mathrm{GF}\left(2^{\wedge} \mathrm{m}\right)$, the syntax hammgen ( m ) is likely to be faster than the syntax hammgen ( $\mathrm{m}, \mathrm{pol}$ ).

## Examples

The command below exhibits the parity-check and generator matrices for a Hamming code with codeword length $7=2^{3}-1$ and message length $4=7-3$.

```
[h,g,n,k] = hammgen(3)
h =
\begin{tabular}{lllllll}
1 & 0 & 0 & 1 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 & 1 & 1 & 0 \\
0 & 0 & 1 & 0 & 1 & 1 & 1
\end{tabular}
g =
\begin{tabular}{lllllll}
1 & 1 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 1 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 & 1 & 0 \\
1 & 0 & 1 & 0 & 0 & 0 & 1
\end{tabular}
n =
 7
 k =
```

    4
    The command below, which uses $1+x^{2}+x^{3}$ as the primitive polynomial for $\mathrm{GF}\left(2^{3}\right)$, shows that the parity-check matrix depends on the choice of primitive polynomial. Notice that h 1 below is different from h in the example above.

$$
h 1=\operatorname{hammgen}\left(3,\left[\begin{array}{llll}
1 & 0 & 1 & 1
\end{array}\right]\right)
$$

## hammgen

```
h1 =
\begin{tabular}{lllllll}
1 & 0 & 0 & 1 & 1 & 1 & 0 \\
0 & 1 & 0 & 0 & 1 & 1 & 1 \\
0 & 0 & 1 & 1 & 1 & 0 & 1
\end{tabular}
```

See Also encode, decode, gen2par, "Block Coding"

| Purpose | Convert Hankel matrix to linear system model |
| :---: | :---: |
| Syntax | $\begin{aligned} & {[\text { num, den }]=\text { hank2sys(h,ini, tol) }} \\ & {[\text { num, den, sv] = hank2sys(h,ini, tol) }} \\ & {[a, b, c, d]=\text { hank2sys(h,ini, tol) }} \\ & {[a, b, c, d, s v]=\operatorname{hank2sys}(h, i n i, \text { tol })} \end{aligned}$ |
| Description | [num, den] = hank2sys(h,ini,tol) converts a Hankel matrix h to a linear system transfer function with numerator num and denominator den. The vectors num and den list the coefficients of their respective polynomials in ascending order of powers of $\mathrm{z}^{-1}$. The argument ini is the system impulse at time zero. If tol $>1$, tol is the order of the conversion. If tol $<1$, tol is the tolerance in selecting the conversion order based on the singular values. If you omit tol, its default value is 0.01. This conversion uses the singular value decomposition method. <br> [num, den, sv] = hank2sys(h,ini, tol) returns a vector sv that lists the singular values of $h$. <br> [a,b,c,d] = hank2sys(h,ini,tol) converts a Hankel matrix h to a corresponding linear system state-space model. a, b, c, and d are matrices. The input parameters are the same as in the first syntax above. <br> [a,b,c,d,sv] = hank2sys(h,ini,tol) is the same as the syntax above, except that $s v$ is a vector that lists the singular values of $h$. |
| Examples | $\begin{aligned} & h=\operatorname{hankel}\left(\left[\begin{array}{lll} 1 & 0 & 1 \end{array}\right]\right) ; \\ & {[\text { num, den, sv] = hank2sys(h, } 0, .01)} \end{aligned}$ |
|  | The output is num = |
|  | $\begin{array}{llll}0 & 1.0000 & 0.0000 & 1.0000\end{array}$ |

## hank2sys

$$
\begin{array}{rlrl} 
& 1.0000 & 0.0000 & 0.0000 \\
S v= & 0.0000 \\
& \\
& 1.6180 \\
& 1.0000 & \\
& 0.6180
\end{array}
$$

See Also
rcosflt, hankel

| Purpose | Restore ordering of symbols permuted using helintrlv |
| :---: | :---: |
| Syntax | ```[deintrlved,state] = heldeintrlv(data,col,ngrp,stp) [deintrlved,state] = heldeintrlv(data,col,ngrp,stp, init_state) deintrlved = heldeintrlv(data,col,ngrp,stp,init_state)``` |
| Description | [deintrlved,state] = heldeintrlv(data,col, ngrp,stp) restores the ordering of symbols in data by placing them in an array row by row and then selecting groups in a helical fashion to place in the output, deintrlved. data must have col*ngrp elements. If data is a matrix with multiple rows and columns, it must have col*ngrp rows, and the function processes the columns independently. state is a structure that holds the final state of the array. state. value stores input symbols that remain in the col columns of the array and do not appear in the output. |
|  | The function uses the array internally for its computations. The array has unlimited rows indexed by $1,2,3, \ldots$, and col columns. The function initializes the top of the array with zeros. It then places col*ngrp symbols from the input into the next ngrp rows of the array. The function places symbols from the array in the output, intrlved, placing ngrp symbols at a time; the kth group of ngrp symbols comes from the kth column of the array, starting from row $1+(\mathrm{k}-1) *$ stp. Some output symbols are default values of 0 rather than input symbols; similarly, some input symbols are left in the array and do not appear in the output. |
|  | [deintrlved,state] = heldeintrlv(data, col, ngrp, stp, init_state) initializes the array with the symbols contained in init_state.value instead of zeros. The structure init_state is typically the state output from a previous call to this same function, and is unrelated to the corresponding interleaver. In this syntax, some output symbols are default values of 0 , some are input symbols from data, and some are initialization values from init_state.value. |
|  | deintrlved = heldeintrlv(data, col, ngrp,stp,init_state) is the same as the syntax above, except that it does not record the deinterleaver's final state. This syntax is appropriate for the last in a |

## heldeintrlv

series of calls to this function. However, if you plan to call this function again to continue the deinterleaving process, the syntax above is more appropriate.

## Using an Interleaver-Deinterleaver Pair

To use this function as an inverse of the helintrlv function, use the same col, ngrp, and stp inputs in both functions. In that case, the two functions are inverses in the sense that applying helintrlv followed by heldeintrlv leaves data unchanged, after you take their combined delay of col*ngrp*ceil(stp*(col-1)/ngrp) into account. To learn more about delays of convolutional interleavers, see "Delays of Convolutional Interleavers".

Note Because the delay is an integer multiple of the number of symbols in data, you must use heldeintrlv at least twice (possibly more times, depending on the actual delay value) before the function returns results that represent more than just the delay.

## Examples

The example below illustrates how to recover interleaved data, taking into account the delay of the interleaver-deinterleaver pair.

```
col = 4; ngrp = 3; stp = 2; % Helical interleaver parameters
% Compute the delay of interleaver-deinterleaver pair.
delayval = col * ngrp * ceil(stp * (col-1)/ngrp);
len = col*ngrp; % Process this many symbols at one time.
data = randint(len,1,10); % Random symbols
data_padded = [data; zeros(delayval,1)]; % Pad with zeros.
% Interleave zero-padded data.
[i1,istate] = helintrlv(data_padded(1:len),col,ngrp,stp);
[i2,istate] = helintrlv(data_padded(len+1:2*len),col,ngrp, ...
 stp,istate);
i3 = helintrlv(data_padded(2*len+1:end),col,ngrp,stp,istate);
```

```
% Deinterleave.
[d1,dstate] = heldeintrlv(i1,col,ngrp,stp);
[d2,dstate] = heldeintrlv(i2,col,ngrp,stp,dstate);
d3 = heldeintrlv(i3,col,ngrp,stp,dstate);
% Check the results.
dO = [d1; d2; d3]; % All the deinterleaved data
dO_trunc = dO(delayval+1:end); % Remove the delay.
ser = symerr(data,dO_trunc)
```

The output below shows that no symbol errors occurred.

```
ser =
```

0

See Also helintrlv, "Interleaving"

Purpose
Permute symbols using helical array
Syntax
Description
intrlved = helintrlv(data, col, ngrp, stp)
[intrlved,state] = helintrlv(data, col, ngrp,stp)
[intrlved,state] = helintrlv(data,col, ngrp,stp,init_state)
intrlved $=$ helintrlv(data, col, ngrp, stp) permutes the symbols in data by placing them in an unlimited-row array in helical fashion and then placing rows of the array in the output, intrlved. data must have col*ngrp elements. If data is a matrix with multiple rows and columns, it must have col*ngrp rows, and the function processes the columns independently.

The function uses the array internally for its computations. The array has unlimited rows indexed by $1,2,3, \ldots$, and col columns. The function partitions col*ngrp symbols from the input into consecutive groups of ngrp symbols. The function places the kth group in the array along column $k$, starting from row $1+(k-1) *$ stp. Positions in the array that do not contain input symbols have default values of 0 . The function places col*ngrp symbols from the array in the output, intrlved, by reading the first ngrp rows sequentially. Some output symbols are default values of 0 rather than input symbols; similarly, some input symbols are left in the array and do not appear in the output.
[intrlved,state] = helintrlv(data, col, ngrp, stp) returns a structure that holds the final state of the array. state. value stores input symbols that remain in the col columns of the array and do not appear in the output.
[intrlved,state] = helintrlv(data,col,ngrp,stp,init_state) initializes the array with the symbols contained in init_state.value. The structure init_state is typically the state output from a previous call to this same function, and is unrelated to the corresponding deinterleaver. In this syntax, some output symbols are default values of 0 , some are input symbols from data, and some are initialization values from init_state. value.

Examples The example below rearranges the integers from 1 to 24.

```
% Interleave some symbols. Record final state of array.
[i1,state] = helintrlv([1:12]',3,4,1);
% Interleave more symbols, remembering the symbols that
% were left in the array from the earlier command.
i2 = helintrlv([13:24]',3,4,1,state);
disp('Interleaved data:')
disp([i1,i2]')
disp('Values left in array after first interleaving operation:')
state.value{:}
```

During the successive calls to helintrlv, it internally creates the three-column arrays

|  | 0 | 0; |
| :---: | :---: | :---: |
| 2 | 5 | 0; |
| 3 | 6 | 9; |
| 4 | 7 | 10; |
| 0 | 8 | 11; |
| 0 | 0 | 12] |

and
[13 8 11;
1417 12;
1518 21;
1619 22;
020 23;
0 0 24]
In the second array shown above, the 8,11 , and 12 are values left in the array from the previous call to the function. Specifying the init_state input in the second call to the function causes it to use those values rather than the default values of 0 .

## helintrlv

The output from this example is below. (The actual interleaved data is a tall matrix, but it has been transposed into a wide matrix for display purposes.) The interleaved data comes from the top four rows of the three-column arrays shown above. Notice that some of the symbols in the first half of the interleaved data are default values of 0 , some of the symbols in the second half of the interleaved data were left in the array from the first call to helintrlv, and some of the input symbols (20, 23, and 24) do not appear in the interleaved data at all.

```
Interleaved data:
 Columns 1 through 10
\begin{tabular}{rrrrrrrrrr}
1 & 0 & 0 & 2 & 5 & 0 & 3 & 6 & 9 & 4 \\
13 & 8 & 11 & 14 & 17 & 12 & 15 & 18 & 21 & 16
\end{tabular}
 Columns 11 through 12
 7 10
 19 22
Values left in array after first interleaving operation:
ans =
 []
ans =
 8
ans =
 11 12
```

The example on the reference page for heldeintrlv also uses this function.

## See Also

heldeintrlv, "Interleaving"

## helscandeintrlv

Purpose
Syntax
Description

## Examples

Restore ordering of symbols in helical pattern
deintrlvd = helscandeintrlv(data,Nrows,Ncols,hstep)
deintrlvd = helscandeintrlv(data,Nrows,Ncols,hstep) rearranges the elements in data by filling a temporary matrix with the elements in a helical fashion and then sending the matrix contents to the output row by row. Nrows and Ncols are the dimensions of the temporary matrix. hstep is the slope of the diagonal, that is, the amount by which the row index increases as the column index increases by one. hstep must be a nonnegative integer less than Nrows.

Helical fashion means that the function places input elements along diagonals of the temporary matrix. The number of elements in each diagonal is exactly Ncols, after the function wraps past the edges of the matrix when necessary. The function traverses diagonals so that the row index and column index both increase. Each diagonal after the first one begins one row below the first element of the previous diagonal.

If data is a vector, it must have Nrows*Ncols elements. If data is a matrix with multiple rows and columns, data must have Nrows*Ncols rows and the function processes the columns independently.

To use this function as an inverse of the helscanintrlv function, use the same Nrows, Ncols, and hstep inputs in both functions. In that case, the two functions are inverses in the sense that applying helscanintrlv followed by helscandeintrlv leaves data unchanged.

The command below rearranges a vector using a 3-by-4 temporary matrix and diagonals of slope 1 .

```
d = helscandeintrlv(1:12,3,4,1)
d =
```

    Columns 1 through 10
    | 1 | 10 | 7 | 4 | 5 | 2 | 11 | 8 | 9 | 6 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

# Columns 11 through 12 

## 312

Internally, the function creates the 3-by-4 temporary matrix
$\left.\begin{array}{rrrr}{\left[\begin{array}{rrr}1 & 10 & 7 \\ 5 & 4 ; \\ 5 & 2 & 11\end{array}\right.} & 8 ; \\ 9 & 6 & 3 & 12\end{array}\right]$
using length-four diagonals. The function then sends the elements, row by row, to the output d.

See Also helscanintrlv, "Interleaving"

## helscanintrlv

Purpose
Reorder symbols in helical pattern

## Syntax

Description

## Examples

intrlvd = helscanintrlv(data,Nrows,Ncols,hstep) nonnegative integer less than Nrows.
intrlvd = helscanintrlv(data, Nrows, Ncols,hstep) rearranges the elements in data by filling a temporary matrix with the elements row by row and then sending the matrix contents to the output in a helical fashion. Nrows and Ncols are the dimensions of the temporary matrix. hstep is the slope of the diagonal, that is, the amount by which the row index increases as the column index increases by one. hstep must be a

Helical fashion means that the function selects elements along diagonals of the temporary matrix. The number of elements in each diagonal is exactly Ncols, after the function wraps past the edges of the matrix when necessary. The function traverses diagonals so that the row index and column index both increase. Each diagonal after the first one begins one row below the first element of the previous diagonal.

If data is a vector, it must have Nrows*Ncols elements. If data is a matrix with multiple rows and columns, data must have Nrows*Ncols rows and the function processes the columns independently.

The command below rearranges a vector using diagonals of two different slopes.

```
i1 = helscanintrlv(1:12,3,4,1) % Slope of diagonal is 1.
i2 = helscanintrlv(1:12,3,4,2) % Slope of diagonal is 2.
```

The output is below.
i1 =
Columns 1 through 10
$\begin{array}{llllllllll}1 & 6 & 11 & 4 & 5 & 10 & 3 & 8 & 9 & 2\end{array}$

Columns 11 through 12

```
 7 12
i2 =
 Columns 1 through 10
 1
 Columns 11 through 12
 3 12
```

In each case, the function internally creates the temporary 3-by-4 matrix
$\left[\begin{array}{rrr}1 & 2 & 3 \\ 5 & 4 ; \\ 5 & 6 & 7 \\ 9 & 10 & 11 \\ \hline\end{array}\right]$

To form i1, the function forms each slope-one diagonal by moving one row down and one column to the right. The first diagonal contains 1 , 6 , 11 , and 4 , while the second diagonal starts with 5 because that is beneath 1 in the temporary matrix.

To form i2, the function forms each slope-two diagonal by moving two rows down and one column to the right. The first diagonal contains 1 , 10,7 , and 4 , while the second diagonal starts with 5 because that is beneath 1 in the temporary matrix.
helscandeintrlv, "Interleaving"

Purpose Design Hilbert transform IIR filter

## Syntax

```
hilbiir
hilbiir(ts)
hilbiir(ts,dly)
hilbiir(ts,dly,bandwidth)
hilbiir(ts,dly,bandwidth,tol)
[num,den] = hilbiir(...)
[num,den,sv] = hilbiir(...)
[a,b,c,d] = hilbiir(...)
[a,b,c,d,sv] = hilbiir(...)
```

Description The function hilbiir designs a Hilbert transform filter. The output is either

- A plot of the filter's impulse response, or
- A quantitative characterization of the filter, using either a transfer function model or a state-space model


## Background Information

An ideal Hilbert transform filter has the transfer function $H(s)=-j \operatorname{sgn}(s)$, where $\operatorname{sgn}($.$) is the signum function (sign in$ MATLAB). The impulse response of the Hilbert transform filter is

$$
h(t)=\frac{1}{\pi t}
$$

Because the Hilbert transform filter is a noncausal filter, the hilbiir function introduces a group delay, dly. A Hilbert transform filter with this delay has the impulse response

$$
h(t)=\frac{1}{\pi(t-\mathrm{dly})}
$$

## Choosing a Group Delay Parameter

The filter design is an approximation. If you provide the filter's group delay as an input argument, these two suggestions can help improve the accuracy of the results:

- Choose the sample time ts and the filter's group delay dly so that dly is at least a few times larger than ts and rem(dly,ts) = ts/2. For example, you can set ts to $2 * d l y / N$, where $N$ is a positive integer.
- At the point $t=d l y$, the impulse response of the Hilbert transform filter can be interpreted as 0 , - Inf, or Inf. If hilbiir encounters this point, it sets the impulse response there to zero. To improve accuracy, avoid the point $\mathrm{t}=\mathrm{dly}$.


## Syntaxes for Plots

Each of these syntaxes produces a plot of the impulse response of the filter that the hilbiir function designs, as well as the impulse response of a corresponding ideal Hilbert transform filter.
hilbiir plots the impulse response of a fourth-order digital Hilbert transform filter with a one-second group delay. The sample time is $2 / 7$ seconds. In this particular design, the tolerance index is 0.05 . The plot also displays the impulse response of the ideal Hilbert transform filter with a one-second group delay.
hilbiir(ts) plots the impulse response of a fourth-order Hilbert transform filter with a sample time of ts seconds and a group delay of ts*7/2 seconds. The tolerance index is 0.05 . The plot also displays the impulse response of the ideal Hilbert transform filter having a sample time of ts seconds and a group delay of $\mathrm{ts} * 7 / 2$ seconds.
hilbiir(ts, dly) is the same as the syntax above, except that the filter's group delay is dly for both the ideal filter and the filter that hilbiir designs. See "Choosing a Group Delay Parameter" on page 2-345 above for guidelines on choosing dly.
hilbiir(ts, dly, bandwidth) is the same as the syntax above, except that bandwidth specifies the assumed bandwidth of the input signal and that the filter design might use a compensator for the input signal.

If bandwidth $=0$ or bandwidth $>1 /(2 *$ ts $)$, hilbiir does not use a compensator.
hilbiir(ts, dly, bandwidth, tol) is the same as the syntax above, except that tol is the tolerance index. If tol $<1$, the order of the filter is determined by

$$
\frac{\text { truncated-singular-value }}{\text { maximum-singular-value }}<\text { tol }
$$

If tol $>1$, the order of the filter is tol.

## Syntaxes for Transfer Function and State-Space Quantities

Each of these syntaxes produces quantitative information about the filter that hilbiir designs, but does not produce a plot. The input arguments for these syntaxes (if you provide any) are the same as those described in "Syntaxes for Plots" on page 2-345.
[num, den] = hilbiir(...) outputs the numerator and denominator of the IIR filter's transfer function.
[num,den,sv] = hilbiir(...) outputs the numerator and denominator of the IIR filter's transfer function, and the singular values of the Hankel matrix that hilbiir uses in the computation.
$[a, b, c, d]=$ hilbiir(...) outputs the discrete-time state-space model of the designed Hilbert transform filter. a, b, c, and d are matrices.
$[a, b, c, d, s v]=$ hilbiir(...) outputs the discrete-time state-space model of the designed Hilbert transform filter, and the singular values of the Hankel matrix that hilbiir uses in the computation.

Algorithm
The hilbiir function calculates the impulse response of the ideal Hilbert transform filter response with a group delay. It fits the response curve using a singular-value decomposition method. See the book by Kailath [1].

Examples

See Also
References

For an example using the function's default values, type one of the following commands at the MATLAB prompt.

```
hilbiir
[num,den] = hilbiir
```

grpdelay, rcosiir, "Special Filters"
[1] Kailath, Thomas, Linear Systems, Englewood Cliffs, NJ, Prentice-Hall, 1980.

## huffmandeco


#### Abstract

Purpose Huffman decoder Syntax dsig = huffmandeco(comp,dict) dsig = huffmandeco(comp, dict) decodes the numeric Huffman code vector comp using the code dictionary dict. The argument dict is an N -by-2 cell array, where N is the number of distinct possible symbols in the original signal that was encoded as comp. The first column of dict represents the distinct symbols and the second column represents the corresponding codewords. Each codeword is represented as a numeric row vector, and no codeword in dict is allowed to be the prefix of any other codeword in dict. You can generate dict using the huffmandict function and comp using the huffmanenco function. If all signal values in dict are numeric, dsig is a vector; if any signal value in dict is alphabetical, dsig is a one-dimensional cell array.

The example below encodes and then decodes a vector of random data that has a prescribed probability distribution.


Description

## Examples

See Also

```
symbols = [1:6]; % Distinct symbols that data source can produce
p = [.5 .125 .125 .125 .0625 .0625]; % Probability distribution
[dict,avglen] = huffmandict(symbols,p); % Create dictionary.
actualsig = randsrc(1,100,[symbols; p]); % Create data using p.
comp = huffmanenco(actualsig,dict); % Encode the data.
dsig = huffmandeco(comp,dict); % Decode the Huffman code.
isequal(actualsig,dsig) % Check whether the decoding is correct.
```

The output below indicates that the decoder successfully recovered the data in actualsig.
ans $=$

## huffmandeco

References
[1] Sayood, Khalid, Introduction to Data Compression, San Francisco, Morgan Kaufmann, 2000.

Purpose

Syntax

## Description

Generate Huffman code dictionary for source with known probability model

```
[dict,avglen] = huffmandict(symbols,p)
[dict,avglen] = huffmandict(symbols,p,N)
[dict,avglen] = huffmandict(symbols,p,N,variance)
```


## For All Syntaxes

The huffmandict function generates a Huffman code dictionary corresponding to a source with a known probability model. The required inputs are

- symbols, which lists the distinct signal values that the source produces. It can have the form of a numeric vector, numeric cell array, or alphanumeric cell array. If it is a cell array, it must be either a row or a column.
- p, a probability vector whose kth element is the probability with which the source produces the kth element of symbols. The length of p must equal the length of symbols.


## The outputs of huffmandict are

- dict, a two-column cell array in which the first column lists the distinct signal values from symbols and the second column lists the corresponding Huffman codewords. In the second column, each Huffman codeword is represented as a numeric row vector.
- avglen, the average length among all codewords in the dictionary, weighted according to the probabilities in the vector $p$.


## For Specific Syntaxes

[dict,avglen] = huffmandict(symbols,p) generates a binary Huffman code dictionary using the maximum variance algorithm.
[dict,avglen] = huffmandict(symbols, $\mathrm{p}, \mathrm{N}$ ) generates an N -ary Huffman code dictionary using the maximum variance algorithm. N is
an integer between 2 and 10 that must not exceed the number of source symbols whose probabilities appear in the vector $p$.
[dict,avglen] = huffmandict(symbols, p,N,variance) generates an N -ary Huffman code dictionary with the minimum variance if variance is 'min' and the maximum variance if variance is 'max'. $N$ is an integer between 2 and 10 that must not exceed the length of the vector p .

## Examples

```
symbols = [1:5];
p = [. 3 .3 .2 .1 .1];
[dict,avglen] = huffmandict(symbols,p)
samplecode = dict{5,2} % Codeword for fifth signal value
```

The output is below, where the first column of dict lists the values in symbols and the second column lists the corresponding codewords.

```
dict =
```

[1] [1x2 double]
[2] [1x2 double]
[3] [1x2 double]
[4] [1x3 double]
[5] [1x3 double]
avglen $=$
2.2000
samplecode $=$
$1 \quad 10$

See Also huffmanenco, huffmandeco, "Huffman Coding"

## huffmandict

References [1] Sayood, Khalid, Introduction to Data Compression, San Francisco,

| Purpose | Huffman encoder |
| :--- | :--- |
| Syntax | comp = huffmanenco(sig, dict) |
| Description | comp $=$ huffmanenco(sig, dict) encodes the signal sig using the <br> Huffman codes described by the code dictionary dict. The argument <br> sig can have the form of a numeric vector, numeric cell array, or <br> alphanumeric cell array. If sig is a cell array, it must be either a row or <br> a column. dict is an N-by-2 cell array, where Nis the number of distinct <br> possible symbols to be encoded. The first column of dict represents the <br> distinct symbols and the second column represents the corresponding <br> codewords. Each codeword is represented as a numeric row vector, and |
| no codeword in dict can be the prefix of any other codeword in dict. |  |
| You can generate dict using the huffmandict function. |  |

Purpose Inverse discrete Fourier transform

## Syntax ifft(x)

Description ifft $(x)$ is the inverse discrete Fourier transform (DFT) of the Galois vector x . If x is in the Galois field $\mathrm{GF}\left(2^{\mathrm{m}}\right)$, the length of x must be $2^{\mathrm{m}}-1$.

Examples For an example using ifft, see the reference page for fft .
Limitations The Galois field over which this function works must have 256 or fewer elements. In other words, x must be in the Galois field $\mathrm{GF}\left(2^{\mathrm{m}}\right)$, where m is an integer between 1 and 8 .

Algorithm
If $x$ is a column vector, ifft applies dftmtx to the multiplicative inverse of the primitive element of the Galois field and multiplies the resulting matrix by x .

See Also fft, dftmtx, "Signal Processing Operations in Galois Fields"
Purpose Integrate and dump
Syntax y = intdump(x,nsamp)
Description $y=$ intdump ( $x$, nsamp) integrates the signal $x$ over a symbol periodand outputs one value for that symbol period. A symbol period consistsof nsamp samples. If $x$ contains multiple symbols, the function processesthe symbols independently. If $x$ is a matrix with multiple rows, thefunction treats each column as a channel and processes the columnsindependently.
Examples An example in "Combining Pulse Shaping and Filtering with Modulation" uses this function in conjunction with modulation.
The code below processes two independent channels, each containing three symbols of data. Each symbol contains four samples.

```
nsamp = 4; % Number of samples per symbol
ch1 = randint(3*nsamp,1,2,68521); % Random binary channel
ch2 = rectpulse([1 2 3]',nsamp); % Rectangular pulses
x = [ch1 ch2]; % Two-channel signal
y = intdump(x,nsamp)
```

The output is below. Each column corresponds to one channel, and each row corresponds to one symbol.

```
y =
\(0.5000 \quad 1.0000\)
 0.5000 2.0000
 1.0000 3.0000
```


## See Also <br> rectpulse

## intrlv

Purpose Reorder sequence of symbols

## Syntax intrlvd = intrlv(data, elements)

Description
intrlvd = intrlv(data, elements) rearranges the elements of data without repeating or omitting any elements. If data is a length- N vector or an N -row matrix, elements is a length- N vector that permutes the integers from 1 to N . The sequence in elements is the sequence in which elements from data or its columns appear in intrlvd. If data is a matrix with multiple rows and columns, the function processes the columns independently.

## Examples

The command below rearranges the elements of a vector. Your output might differ because the permutation vector is random in this example.

```
p = randperm(10); % Permutation vector
a = intrlv(10:10:100,p)
```

The output is below.
$\mathrm{a}=$
$\begin{array}{llllllllll}10 & 90 & 60 & 30 & 50 & 80 & 100 & 20 & 70 & 40\end{array}$
The command below rearranges each of two columns of a matrix.

```
b = intrlv([.1 .2 .3 .4 .5; .2 .4 .6 . 8 1]',[2 4 3 5 1])
b =
```

| 0.2000 | 0.4000 |
| :--- | :--- |
| 0.4000 | 0.8000 |
| 0.3000 | 0.6000 |
| 0.5000 | 1.0000 |
| 0.1000 | 0.2000 |

## See Also deintrlv, "Interleaving"

Purpose True for trellis corresponding to catastrophic convolutional code
Syntax iscatastrophic(s)
Description iscatastrophic(s) returns true if the trellis s corresponds toa convolutional code that causes catastrophic error propagation.Otherwise, it returns false.
See Also convenc, istrellis, poly2trellis, struct, "Convolutional Coding"

## isprimitive

## Purpose True for primitive polynomial for Galois field

## Syntax isprimitive(a)

Description isprimitive(a) returns 1 if the polynomial that a represents is primitive for the Galois field $\mathrm{GF}\left(2^{\mathrm{m}}\right)$, and 0 otherwise. The input a can represent the polynomial using one of these formats:

- A nonnegative integer less than $2^{17}$. The binary representation of this integer indicates the coefficients of the polynomial. In this case, $m$ is floor (log2(a)).
- A Galois row vector in GF(2), listing the coefficients of the polynomial in order of descending powers. In this case, $m$ is the order of the polynomial represented by a.


## Examples

The example below finds all primitive polynomials for $\mathrm{GF}(8)$ and then checks using isprimitive whether specific polynomials are primitive.

```
a = primpoly(3,'all','nodisplay'); % All primitive polys for GF(8)
isp1 = isprimitive(13) % 13 represents a primitive polynomial.
isp2 = isprimitive(14) % 14 represents a nonprimitive polynomial.
```

The output is below. If you examine the vector a, notice that isp1 is true because 13 is an element in a, while isp2 is false because 14 is not an element in a.

```
isp1 =
```

1

```
isp2 =
```

    0
    
## istrellis

Purpose True for valid trellis structure

```
Syntax
[isok,status] = istrellis(s)
```

Description
[isok, status] = istrellis(s) checks if the input s is a valid trellis structure. If the input is a valid trellis structure, isok is 1 and status is an empty string. Otherwise, isok is 0 and status is a string that indicates why s is not a valid trellis structure.
A valid trellis structure is a MATLAB structure whose fields are as in the table below.

Fields of a Valid Trellis Structure for a Rate k/n Code

| Field in Trellis <br> Structure | Dimensions | Meaning |
| :--- | :--- | :--- |
| numInputSymbols | Scalar | Number of input <br> symbols to the <br> encoder: $2^{\mathrm{k}}$ |
| numOutputSymbols | Scalar | Number of output <br> symbols from the <br> encoder: $2^{\mathrm{n}}$ |
| numStates | Scalar | Number of states in <br> the encoder |
| nextStates | numStates-by- $2^{\mathrm{k}}$ <br> matrix | Next states for all <br> combinations of <br> current state and <br> current input |
| outputs | numStates-by-2 $2^{\mathrm{k}}$ |  |
| matrix | Outputs (in octal) <br> for all combinations <br> of current state and <br> current input |  |

In the nextStates matrix, each entry is an integer between 0 and numStates-1. The element in the sth row and uth column denotes the next state when the starting state is $s-1$ and the input bits have decimal representation $u-1$. To convert the input bits to a decimal value, use the first input bit as the most significant bit (MSB). For example, the second column of the nextStates matrix stores the next states when the current set of input values is $\{0, \ldots, 0,1\}$.

To convert the state to a decimal value, use this rule: If k exceeds 1 , the shift register that receives the first input stream in the encoder provides the least significant bits in the state number, and the shift register that receives the last input stream in the encoder provides the most significant bits in the state number.
In the outputs matrix, the element in the sth row and uth column denotes the encoder's output when the starting state is s-1 and the input bits have decimal representation $u-1$. To convert to decimal value, use the first output bit as the MSB.

## Examples

These commands assemble the fields into a very simple trellis structure, and then verify the validity of the trellis structure.

```
trellis.numInputSymbols = 2;
trellis.numOutputSymbols = 2;
trellis.numStates = 2;
trellis.nextStates = [0 1;0 1];
trellis.outputs = [0 0;1 1];
[isok,status] = istrellis(trellis)
```

The output is below.

```
isok =
```

    1
    status =

## istrellis

Another example of a trellis is in "Trellis Description of a Convolutional Encoder".

See Also poly2trellis, struct, convenc, vitdec, "Convolutional Coding"

## Purpose <br> Syntax

Construct linear equalizer object

```
eqobj = lineareq(nweights,alg)
eqobj = lineareq(nweights,alg,sigconst)
eqobj = lineareq(nweights,alg,sigconst,nsamp)
```

The lineareq function creates an equalizer object that you can use with the equalize function to equalize a signal. To learn more about the process for equalizing a signal, see "Using Adaptive Equalizer Functions and Objects".
eqobj = lineareq(nweights,alg) constructs a symbol-spaced linear equalizer object. The equalizer has nweights complex weights, which are initially all zeros. alg describes the adaptive algorithm that the equalizer uses; you should create alg using any of these functions: lms, signlms, normlms, varlms, rls, or cma. The signal constellation of the desired output is [-1 1], which corresponds to binary phase shift keying (BPSK).
eqobj = lineareq(nweights,alg,sigconst) specifies the signal constellation vector of the desired output.
eqobj = lineareq(nweights,alg,sigconst,nsamp) constructs a fractionally spaced linear equalizer object. The equalizer has nweights complex weights spaced at $T / n s a m p$, where $T$ is the symbol period and nsamp is a positive integer. nsamp $=1$ corresponds to a symbol-spaced equalizer.

## Properties

The table below describes the properties of the linear equalizer object. To learn how to view or change the values of a linear equalizer object, see "Accessing Properties of an Equalizer".

Tip To initialize or reset the equalizer object eqobj, enter reset (eqobj).

| Property | Description |
| :--- | :--- |
| EqType | Fixed value, 'Linear <br> Equalizer' |
| AlgType | Name of the adaptive algorithm <br> represented by alg |
| nWeights | Number of weights |
| nSampPerSym | Number of input samples per <br> symbol (equivalent to nsamp input <br> argument). This value relates <br> to both the equalizer structure <br> (see the use of K in "Fractionally <br> Spaced Equalizers") and an <br> assumption about the signal to be <br> equalized. |
| RefTap (except for CMA | Reference tap index, between 1 <br> and nWeights. Setting this to a <br> value greater than 1 effectively <br> delays the reference signal and <br> the output signal by RefTap-1 <br> with respect to the equalizer's <br> input signal. |
| SigConst | Signal constellation, a vector <br> whose length is typically a power <br> of 2 |
| Weights | Vector of complex coefficients. <br> This is the set of w |
| the schematic in "Symbol-Spaced |  |
| Equalizers". |  |


| Property | Description |
| :--- | :--- |
| ResetBeforeFiltering | If 1, each call to equalize <br> resets the state of eqobj before <br> equalizing. If 0, the equalization <br> process maintains continuity <br> from one call to the next. |
| NumSamplesProcessed | Number of samples the equalizer <br> processed since the last reset. <br> When you create or reset eqobj, <br> this property value is 0. |
| Properties specific to the adaptive <br> algorithm represented by alg | See reference page for the <br> adaptive algorithm function <br> that created alg: lms, signlms, <br> normlms, varlms, rls, or cma. |

## Relationships Among Properties

If you change nWeights, MATLAB maintains consistency in the equalizer object by adjusting the values of the properties listed below.

| Property | Adjusted Value |
| :--- | :--- |
| Weights | zeros(1, nWeights) |
| WeightInputs | zeros(1, nWeights) |
| StepSize <br> (Variable-step-size LMS <br> equalizers) | InitStep*ones(1, nWeights) |
| InvCorrMatrix (RLS <br> equalizers) | InvCorrInit*eye(nWeights) |

An example illustrating relationships among properties is in "Linked Properties of an Equalizer Object".

Examples For examples that use this function, see "Equalizing Using a Training Sequence", "Example: Equalizing Multiple Times, Varying the Mode", and "Example: Adaptive Equalization Within a Loop".

See Also lms, signlms, normlms, varlms, rls, cma, dfe, equalize, "Equalizers"

## Purpose

Optimize quantization parameters using Lloyd algorithm

## Syntax

[partition,codebook] = lloyds(training_set,initcodebook)
[partition, codebook] = lloyds(training_set,len)
[partition, codebook] = lloyds(training_set,...,tol)
[partition, codebook,distor] = lloyds(...)
[partition, codebook, distor, reldistor] = lloyds(...)
Description
[partition, codebook] = lloyds(training_set,initcodebook) optimizes the scalar quantization parameters partition and codebook for the training data in the vector training_set. initcodebook, a vector of length at least 2 , is the initial guess of the codebook values. The output codebook is a vector of the same length as initcodebook. The output partition is a vector whose length is one less than the length of codebook.

See "Representing Partitions", "Representing Codebooks", or the reference page for quantiz in this chapter, for a description of the formats of partition and codebook.

Note lloyds optimizes for the data in training_set. For best results, training_set should be similar to the data that you plan to quantize.
[partition, codebook] = lloyds(training_set,len) is the same as the first syntax, except that the scalar argument len indicates the size of the vector codebook. This syntax does not include an initial codebook guess.
[partition, codebook] = lloyds(training_set,...,tol) is the same as the two syntaxes above, except that tol replaces $10^{-7}$ in condition 1 of the algorithm description below.
[partition,codebook,distor] = lloyds(...) returns the final mean square distortion in the variable distor.
[partition,codebook, distor,reldistor] = lloyds(...) returns a value reldistor that is related to the algorithm's termination. In
condition 1 of the algorithm below, reldistor is the relative change in distortion between the last two iterations. In condition 2, reldistor is the same as distor.

## Examples

The code below optimizes the quantization parameters for a sinusoidal transmission via a three-bit channel. Because the typical data is sinusoidal, training_set is a sampled sine wave. Because the channel can transmit three bits at a time, lloyds prepares a codebook of length $2^{3}$.

```
% Generate a complete period of a sinusoidal signal.
x = sin([0:1000]*pi/500);
[partition,codebook] = lloyds(x,2^3)
```

The output is below.

```
partition =
 Columns 1 through 6
 -0.8540 -0.5973 -0.3017 0.0031 0.3077 0.6023
 Column 7
 0.8572
codebook =
 Columns 1 through 6
 -0.9504 -0.7330 -0.4519 -0.1481 0.1558 0.4575
 Columns }7\mathrm{ through 8
 0.7372 0.9515
```

Algorithm

See Also
References
lloyds uses an iterative process to try to minimize the mean square distortion. The optimization processing ends when either

- The relative change in distortion between iterations is less than $10^{-7}$.
- The distortion is less than eps*max(training_set), where eps is the MATLAB floating-point relative accuracy.
quantiz, dpcmopt, "Source Coding"
[1] Lloyd, S.P., "Least Squares Quantization in PCM," IEEE Transactions on Information Theory, Vol. IT-28, March, 1982, pp. 129-137.
[2] Max, J., "Quantizing for Minimum Distortion," IRE Transactions on Information Theory, Vol. IT-6, March, 1960, pp. 7-12.

Purpose Construct least mean square (LMS) adaptive algorithm object
Syntax $\quad \begin{aligned} \text { alg } & =\operatorname{lms}(\text { stepsize }) \\ \text { alg } & =\operatorname{lms}(\text { stepsize, leakagefactor })\end{aligned}$
Description
The lms function creates an adaptive algorithm object that you can use with the lineareq function or dfe function to create an equalizer object. You can then use the equalizer object with the equalize function to equalize a signal. To learn more about the process for equalizing a signal, see "Using Adaptive Equalizer Functions and Objects".
alg = lms(stepsize) constructs an adaptive algorithm object based on the least mean square (LMS) algorithm with a step size of stepsize.
alg $=\operatorname{lms}($ stepsize, leakagefactor) sets the leakage factor of the LMS algorithm. leakagefactor must be between 0 and 1 . A value of 1 corresponds to a conventional weight update algorithm, and a value of 0 corresponds to a memoryless update algorithm.

## Properties

The table below describes the properties of the LMS adaptive algorithm object. To learn how to view or change the values of an adaptive algorithm object, see "Accessing Properties of an Adaptive Algorithm".

| Property | Description |
| :--- | :--- |
| AlgType | Fixed value, 'LMS' |
| StepSize | LMS step size parameter, a <br> nonnegative real number |
| LeakageFactor | LMS leakage factor, a real <br> number between 0 and 1 |

## Examples

For examples that use this function, see "Equalizing Using a Training Sequence", "Example: Equalizing Multiple Times, Varying the Mode", and "Example: Adaptive Equalization Within a Loop".

[^1]Purpose Logarithm in Galois field

## Syntax $\quad y=\log (x)$

Description $\quad y=\log (x)$ computes the logarithm of each element in the Galois array $x$. $y$ is an integer array that solves the equation $A .{ }^{\wedge} y=x$, where $A$ is the primitive element used to represent elements in $x$. More explicitly, the base $A$ of the logarithm is $g f(2, x . m)$ or $g f\left(2, x . m, x . p r i m \_p o l y\right)$. All elements in $x$ must be nonzero because the logarithm of zero is undefined.

## Examples

The code below illustrates how the logarithm operation inverts exponentiation.

```
m = 4; x = gf([8 1 6; 3 5 7; 4 9 2],m);
y = log(x);
primel = gf(2,m); % Primitive element in the field
z = primel .^ y; % This is now the same as x.
ck = isequal(x,z)
```

The output is
ck =
1
The code below shows that the logarithm of 1 is 0 and that the logarithm of the base (primel) is 1 .

```
m = 4; primel = gf(2,m);
yy = log([1, primel])
```

The output is
yy =
$0 \quad 1$

## Purpose

Generalized Marcum Q function
Syntax
$Q=\operatorname{marcumq}(a, b)$
$Q=\operatorname{marcumq}(a, b, m)$
$Q=\operatorname{marcumq}(a, b)$ computes the Marcum $Q$ function of $a$ and $b$, defined by

$$
Q(a, b)=\int_{b}^{\infty} x \exp \left(-\frac{x^{2}+a^{2}}{2}\right) I_{0}(a x) d x
$$

where a and b are nonnegative real numbers. In this expression, $I_{0}$ is the modified Bessel function of the first kind of zero order.
$Q=\operatorname{marcumq}(a, b, m)$ computes the generalized Marcum $Q$, defined by

$$
Q(a, b)=\frac{1}{a^{m-1}} \int_{b}^{\infty} x^{m} \exp \left(-\frac{x^{2}+a^{2}}{2}\right) I_{m-1}(a x) d x
$$

where $a$ and $b$ are nonnegative real numbers, and $m$ is a positive integer. In this expression, $I_{\mathrm{m}-1}$ is the modified Bessel function of the first kind of order $m-1$.

If any of the inputs is a scalar, it is expanded to the size of the other inputs.

## See Also <br> besseli

References
[1] Cantrell, P. E., and A. K. Ojha, "Comparison of Generalized Q-Function Algorithms," IEEE Transactions on Information Theory, Vol. IT-33, July, 1987, pp. 591-596.
[2] Marcum, J. I., "A Statistical Theory of Target Detection by Pulsed Radar: Mathematical Appendix," RAND Corporation, Santa Monica,

CA, Research Memorandum RM-753, July 1, 1948. Reprinted in IRE Transactions on Information Theory, Vol. IT-6, April, 1960, pp. 59-267.
[3] Shnidman, D. A., "The Calculation of the Probability of Detection and the Generalized Marcum Q-Function," IEEE Transactions on Information Theory, Vol. IT-35, March, 1989, pp. 389-400.

## Purpose

Convert mask vector to shift for shift register configuration

## Syntax

Description
shift = mask2shift(prpoly,mask)
shift = mask2shift(prpoly,mask) returns the shift that is equivalent to a mask, for a linear feedback shift register whose connections are specified by the primitive polynomial prpoly. The prpoly input can have one of these formats:

- A binary vector that lists the coefficients of the primitive polynomial in order of descending powers
- An integer scalar whose binary representation gives the coefficients of the primitive polynomial, where the least significant bit is the constant term

The mask input is a binary vector whose length is the degree of the primitive polynomial.

Note To save time, mask2shift does not check that prpoly is primitive. If it is not primitive, the output is not meaningful. To find primitive polynomials, use primpoly or see [2].

For more information about how masks and shifts are related to pseudonoise sequence generators, see shift2mask.

## Definition of Equivalent Shift

If $A$ is a root of the primitive polynomial and $m(A)$ is the mask polynomial evaluated at A, the equivalent shift s solves the equation $A^{s}$ $=\mathrm{m}(\mathrm{A})$. To interpret the vector mask as a polynomial, treat mask as a list of coefficients in order of descending powers.

## Examples

The first command below converts a mask of $x^{3}+1$ into an equivalent shift for the linear feedback shift register whose connections are specified by the primitive polynomial $x^{4}+x^{3}+1$. The second command
shows that a mask of 1 is equivalent to a shift of 0 . In both cases, notice that the length of the mask vector is one less than the length of the prpoly vector.

```
s = mask2shift([1 1 0 0 1],[10 0 0 1])
s2 = mask2shift([1 1 0 0 1],[0 0 0 1])
```

The output is below.

```
S =
```

4
s2 =

0
See Also shift2mask, log, isprimitive, primpoly
References [1] Lee, J. S., and L. E. Miller, CDMA Systems Engineering Handbook, Boston, Artech House, 1998.
[2] Simon, Marvin K., Jim K. Omura, et al., Spread Spectrum Communications Handbook, New York, McGraw-Hill, 1994.

## Purpose

## Syntax

Description

## Examples

Restore ordering of symbols by filling matrix by columns and emptying it by rows

```
deintrlvd = matdeintrlv(data,Nrows,Ncols)
```

deintrlvd = matdeintrlv(data, Nrows, Ncols) rearranges the elements in data by filling a temporary matrix with the elements column by column and then sending the matrix contents, row by row, to the output. Nrows and Ncols are the dimensions of the temporary matrix. If data is a vector, it must have Nrows*Ncols elements. If data is a matrix with multiple rows and columns, data must have Nrows*Ncols rows and the function processes the columns independently.
To use this function as an inverse of the matintrlv function, use the same Nrows and Ncols inputs in both functions. In that case, the two functions are inverses in the sense that applying matintrlv followed by matdeintrlv leaves data unchanged.

The code below illustrates the inverse relationship between matintrlv and matdeintrlv.

```
Nrows = 2; Ncols = 3;
data = [1 2 3 4 5 6; 2 4 6 8 10 12]';
a = matintrlv(data,Nrows,Ncols); % Interleave.
b = matdeintrlv(a,Nrows,Ncols) % Deinterleave.
```

The output below shows that b is the same as data.
b =
12
24
36
48
510
$6 \quad 12$

## matdeintrlv

See Also matintrlv, "Interleaving"

## Purpose

Reorder symbols by filling matrix by rows and emptying it by columns

```
Syntax
intrlvd = matintrlv(data,Nrows,Ncols)
```


## Examples

## See Also

## mimochan

## Purpose Create MIMO fading channel object

```
Syntax chan = mimochan(nt, nr, ts, fd)
chan = mimochan(nt, nr, ts, fd, tau)
chan = mimochan(nt, nr, ts, fd, tau, pdb)
```


## Description

## Properties

chan $=$ mimochan( $\mathrm{nt}, \mathrm{nr}, \mathrm{ts}, \mathrm{fd}$ ) constructs a multiple-input multiple-output (MIMO) Rayleigh fading channel object with a single path link.

- $n t$ is the number of transmit antennas.
- $n r$ is the number of receive antennas.
- $n t$ and $n r$ can be integer values from 1 to 8 .
- $t s$ is the sample time of the input signal, in seconds.
- $f d$ is the maximum Doppler shift, in hertz.

You can model the effect of the channel, chan, on a signal $x$ by using the syntax $\mathrm{y}=$ filter (chan, x ), where the input signal $x$ has $n t$ columns, and the output signal $y$ has $n s$ columns. See filter (mimo) for more information.
chan $=$ mimochan( $\mathrm{nt}, \mathrm{nr}$, ts, fd, tau) constructs a MIMO fading channel object with a frequency selective multipath link that models each discrete path as an independent Rayleigh fading process with the same average gain. tau represents a row vector of path delays, each specified in seconds
chan $=$ mimochan( nt , nr , ts , fd , tau, pdb ) specifies $p d b$ as a row vector of average path gains, each in $d B$.

A MIMO fading channel object has the properties shown in the following table. You can write to all properties except for the ones explicitly noted otherwise.

| Property | Description |
| :--- | :--- |
| NumTxAntennas | Number of transmit antennas, between <br> 1 and 8. |
| NumRxAntennas | Number of receive antennas, between 1 <br> and 8. |
| InputSamplePeriod | Sample period of the signal on which the <br> channel acts, measured in seconds. |
| DopplerSpectrum | Any Doppler spectrum objects. This <br> property defaults to a Jakes Doppler <br> object. Must either be a single Doppler <br> object or a vector of Doppler objects with <br> the same length as PathDelays. |
| MaxDopplerShift | Maximum Doppler shift of the channel, in <br> hertz (applies to all paths of a channel). |
| PathDelays | Vector listing the delays of the discrete <br> paths, in seconds. This value defaults <br> to 0. |
| AvgPathGaindB | Vector listing the average gain of the <br> discrete paths, in dB. Must be of the |
| same size as PathDelays. This value |  |
| defaults to 0. |  |$|$

## mimochan

| Property | Description |
| :--- | :--- |
| KFactor | Rician K-factor (scalar or vector). This <br> value defaults to 0 (Rayleigh fading). |
| DirectPathDopplerShift | Any Doppler shifts of the line-of-sight <br> components in hertz. This value defaults <br> to 0. |
| DirectPathInitPhase | Any Initial phases of line-of-sight <br> components in radians. This value <br> defaults to 0. |
| ResetBeforeFiltering | If this value is 1, each call to filter resets <br> the state of the channel object before <br> filtering. If it is 0, the fading process <br> maintains continuity from one call to the <br> next. This value defaults to 1. |
| NormalizePathGains | If this value is 1, the fading process is <br> normalized such that the expected value <br> of the path gains' total power is 1. This <br> value defaults to 1. |
| StorePathGains | If this value is 1, the complex path gain <br> array is stored as the channel filter <br> function processes the signal. This value <br> defaults to 0. |
| ChannelType | Fixed value, 'MIMO'. This property is <br> not writable. |
| PathGains | Complex array of size Ns by $L$ by <br> NumTxAntennas by NumRRAntennas <br> (where Ns is the number of samples and <br> Lis the length of PathDelays), listing |
| the current gains of the discete paths |  |
| for each combination of transmit/receive |  |
| antennas. This property is not writable. |  |,


| Property | Description |
| :--- | :--- |
| ChannelFilterDelay | Delay of the channel filter, measured in <br> samples. This property is not writable. |
| NumSamplesProcessed | Number of samples the channel processed <br> since the last reset. When you create or <br> reset chan, this property value is 0. This <br> property is not writable. |

## Relationships Among Properties

Changing the length of PathDelays also changes:

- the length of AvgPathGaindB
- the lengths of KFactor, DirectPathDopplerShift and DirectPathInitPhase, if KFactor is a vector (no changes if KFactor is a scalar).
- the length of DopplerSpectrum, if DopplerSpectrum is a vector (no change if DopplerSpectrum is a single object)
- the size of TxCorrelationMatrix and/or RxCorrelationMatrix, if either property is a 3-D array

Changing the length of PathDelays also changes:

- MATLAB software truncates or zero-pads the value of AvgPathGaindB to adjust its vector length
- If KFactor is a vector, MATLAB software truncates or zero-pads the value of KFactor to adjust its vector length. DirectPathDopplerShift and DirectPathInitPhase both follow changes in KFactor
- If DopplerSpectrum is a vector of Doppler objects, MATLAB software adds Jakes Doppler objects or removes elements from DopplerSpectrum, to make it the same length as PathDelays


## mimochan

- If TxCorrelationMatrix and/or RxCorrelationMatrix is a 3-D array, will add identity matrices or remove matrices from the 3-D array, so that the 3rd dimension equals the length of PathDelays
- MATLAB software may also change the values of read-only properties, such as PathGains and ChannelFilterDelay


## Rayleigh and Rician Fading

If KFactor is a scalar value, then the first discrete path indicates a Rician fading process (it contains a line-of-sight component) with a K -factor (defined by the value for KFactor). The remaining discrete paths are independent Rayleigh fading processes (no line-of-sight component). If KFactor is a vector of the same size as PathDelays, then each discrete path indicates a Rician fading process with a K-factor given by the corresponding element of the vector KFactor.

DirectPathDopplerShift must be the same size as KFactor. If KFactor and DirectPathDopplerShift are scalar values, the line-of-sight component of the first discrete path has a Doppler shift of DirectPathDopplerShift, while the remaining discrete paths indicate independent Rayleigh fading processes. If DirectPathDopplerShift is a vector of the same size as KFactor, the line-of-sight component of each discrete path has a Doppler shift given by the corresponding element of the vector DirectPathDopplerShift.

You can set any initial phases of the line-of-sight components through the property DirectPathInitPhase.

## Methods

A MIMO fading channel object has the following methods.

## filter

This method filters data through the MIMO fading channel object.
$y=$ filter (chan, $x$ ) filters data through the MIMO channel, where the input $x$ is a matrix of size $N s$ by $n t$. The output, $y$, is a matrix of size $N s$ by $n r$. For these matrices, $N s$ is the number of samples, $n t$ is the number of transmit antennas, and $n r$ is the number of receive antennas.

## reset

This method resets the MIMO channel object.
reset (chan) resets the MIMO channel object, chan, initializing the PathGains and NumSamplesProcessed properties as well as internal filter states. This is useful when you want the effect of creating a new channel.
reset (chan, randstate) resets the MIMO channel object, chan and initializes the state of the random number generator, randstate, that the channel uses. randstate is a two-element column vector or a scalar integer. This is useful when you want to repeat previous numerical results that started from a particular state.

## Examples

The following example creates a MIMO channel object with two transmit and receive antennas, three paths, Rician K-factor greater than zero, and specific correlation matrices. First create the channel object using the mimochan function, as shown below:

```
chan = mimochan(2, 2, 1e-4, 60, [0 2.5e-4 3e-4], [0 -2 -3])
```

mimochan returns the following channel:

```
chan =
 ChannelType: 'MIMO'
 NumTxAntennas: 2
 NumRxAntennas: 2
 InputSamplePeriod: 1.0000e-004
 DopplerSpectrum: [1x1 doppler.jakes]
 MaxDopplerShift: 60
 PathDelays: [0 2.5000e-004 3.0000e-004]
 AvgPathGaindB: [0 -2 -3]
 TxCorrelationMatrix: [2x2 double]
 RxCorrelationMatrix: [2x2 double]
 KFactor: 0
 DirectPathDopplerShift: 0
 DirectPathInitPhase: 0
```


## mimochan

```
ResetBeforeFiltering: 1
 NormalizePathGains: 1
 StorePathGains: 0
 PathGains: [4-D double]
 ChannelFilterDelay: 4
NumSamplesProcessed: 0
```

Now assign the Rician K-factor to the first path, and set the transmit and receive correlation matrices of the MIMO channel object.

```
chan.KFactor = 2;
chan.TxCorrelationMatrix = [1 0.6; 0.6 1];
chan.RxCorrelationMatrix = [1 0.5*j; -0.5*j 1];
```

Now we can use this channel to filter data signals. This example sends a series of ones through the channel and stores the output.

```
y = filter(chan, ones(20, 2));
```

Plot the channel output signals:

```
t=(0:19)*chan.InputSamplePeriod;
plot(t,abs(y))
xlabel('Time (s)')
ylabel('Amplitude')
legend('1st antenna output','2nd antenna output')
```

The figure window displays.


## See Also doppler.bell

## References

[1] Jeruchim, M., Balaban, P., and Shanmugan, K., Simulation of Communication Systems, Second Edition, New York, Kluwer Academic/Plenum, 2000.
[2] J. P. Kermoal, L. Schumacher, K. I. Pedersen, P. E. Mogensen, and F. Frederiksen, "A stochastic MIMO radio channel model with experimental validation", IEEE Journal on Selected Areas of Commun., vol. 20, no. 6, pp. 1211-1226, Aug. 2002.
[3] C. Oestges and B. Clerckx, MIMO Wireless Communications: From Real-World Propagation to Space-Time Code Design, Academic Press, 2007.
[4] L. M. Correira, Ed., Mobile Broadband Multimedia Networks: Techniques, Models and Tools for 4G, Academic Press, 2006.

## minpol

Purpose Find minimal polynomial of Galois field element

## Syntax <br> pl $=$ minpol( $x$ )

Description
pl $=$ minpol $(x)$ finds the minimal polynomial of each element in the Galois column vector, x . The output pl is an array in $\mathrm{GF}(2)$. The kth row of pl lists the coefficients, in order of descending powers, of the minimal polynomial of the kth element of $x$.

Note The output is in $\mathrm{GF}(2)$ even if the input is in a different Galois field.

## Examples

The code below uses $m=4$ and finds that the minimal polynomial of $\mathrm{gf}(2, \mathrm{~m})$ is just the primitive polynomial used for the field $\mathrm{GF}\left(2^{\wedge} \mathrm{m}\right)$. This is true for any value of $m$, not just the value used in the example.

```
m = 4;
A = gf(2,m)
pl = minpol(A)
```

The output is below. Notice that the row vector [ $\left.\begin{array}{lllll}1 & 0 & 0 & 1 & 1\end{array}\right]$ represents the polynomial $\mathrm{D}^{\wedge} 4+\mathrm{D}+1$.

```
A = GF(2^4) array. Primitive polynomial = D^4+D+1 (19 decimal)
```

Array elements =
2
$\mathrm{pl}=\mathrm{GF}(2)$ array.
Array elements =
$\begin{array}{lllll}1 & 0 & 0 & 1 & 1\end{array}$

# Another example is in "Minimal Polynomials". 

See Also
cosets, "Polynomials over Galois Fields"

Purpose Matrix left division \of Galois arrays

## Syntax $\quad x=A \backslash B$

Description $\quad x=A \backslash B$ divides the Galois array $A$ into $B$ to produce a particular solution of the linear equation $A * x=B$. In the special case when $A$ is a nonsingular square matrix, $x$ is the unique solution, $\operatorname{inv}(A) * B$, to the equation.

The code below shows that $\mathrm{A} \backslash \operatorname{eye}(\operatorname{size}(\mathrm{A}))$ is the inverse of the nonsingular square matrix $A$.

```
m = 4; A = gf([8 1 6; 3 5 7; 4 9 2],m);
Id = gf(eye(size(A)),m);
X = A \ Id;
ck1 = isequal(X*A, Id)
ck2 = isequal(A*X, Id)
```

The output is below.

```
ck1 =
```

1
ck2 $=$

1
Other examples are in "Solving Linear Equations".

## Limitations The matrix A must be one of these types:

- A nonsingular square matrix
- A tall matrix such that $A^{\prime}$ *A is nonsingular
- A wide matrix such that $A^{*} A^{\prime}$ is nonsingular

Algorithm
If $A$ is an $M$-by- $N$ tall matrix where $M>N, A \backslash B$ is the same as $\left(A^{\prime *} A\right) \backslash\left(A^{\prime *} B\right)$.
If $A$ is an M-by-N wide matrix where $M<N, A \backslash B$ is the same as $A^{\prime} *\left(\left(A^{*} A^{\prime}\right) \backslash B\right)$. This solution is not unique.

See Also "Linear Algebra in Galois Fields"

Purpose Equalize linearly modulated signal using Viterbi algorithm

```
Syntax
y = mlseeq(x,chcffs, const,tblen,opmode)
y = mlseeq(x,chcffs, const,tblen,opmode,nsamp)
y = mlseeq(...,'rst',nsamp, preamble, postamble)
y = mlseeq(...,'cont', nsamp,...
init_metric,init_states,init_inputs)
[y,final_metric,final_states,final_inputs] = ...
mlseeq(...,'cont',...)
```


## Description

$y=m l s e e q(x$, chcffs, const,tblen,opmode) equalizes the baseband signal vector x using the Viterbi algorithm. chcffs is a vector that represents the channel coefficients. const is a complex vector that lists the points in the ideal signal constellation, in the same sequence that the system's modulator uses. tblen is the traceback depth. The equalizer traces back from the state with the best metric. opmode denotes the operation mode of the equalizer; the choices are described in the following table.

| Value of opmode | Typical Usage |
| :--- | :--- |
| 'rst' | Enables you to specify a preamble and <br> postamble that accompany your data. The <br> function processes x independently of data <br> from any other invocations of this function. <br> This mode incurs no output delay. |
| 'cont' | Enables you to save the equalizer's internal <br> state information for use in a subsequent <br> invocation of this function. Repeated calls <br> to this function are useful if your data is <br> partitioned into a series of smaller vectors that <br> you process within a loop, for example. This <br> mode incurs an output delay of tblen symbols. |

$y=$ mlseeq ( $x$, chcffs, const, tblen, opmode, nsamp) specifies the number of samples per symbol in $x$, that is, the oversampling factor.

The vector length of $x$ must be a multiple of nsamp. When nsamp $>1$, the chcffs input represents the oversampled channel coefficients.

## Preamble and Postamble in Reset Operation Mode

y = mlseeq(...,'rst', nsamp, preamble, postamble) specifies the preamble and postamble that you expect to precede and follow, respectively, the data in the input signal. The vectors preamble and postamble consist of integers between 0 and $\mathrm{M}-1$, where M is the order of the modulation, that is, the number of elements in const. To omit a preamble or postamble, specify [].
When the function applies the Viterbi algorithm, it initializes state metrics in a way that depends on whether you specify a preamble and/or postamble:

- If the preamble is nonempty, the function decodes the preamble and assigns a metric of 0 to the decoded state. If the preamble does not decode to a unique state (that is, if the length of the preamble is less than the channel memory), the decoder assigns a metric of 0 to all states that can be represented by the preamble. The traceback path ends at one of the states represented by the preamble.
- If the preamble is unspecified or empty, the decoder initializes the metrics of all states to 0 .
- If the postamble is nonempty, the traceback path begins at the smallest of all possible decoded states that are represented by the postamble.
- If the postamble is unspecified or empty, the traceback path starts at the state with the smallest metric.


## Additional Syntaxes in Continuous Operation Mode

y = mlseeq(...,'cont', nsamp,...
init_metric, init_states, init_inputs) causes the equalizer to start with $\bar{i}$ it state metrics, traceback states, and traceback inputs specified by init_metric, init_states, and init_inputs, respectively. These three inputs are typically the extra outputs from a previous call to this function, as in the syntax below. Each real number in init_metric
represents the starting state metric of the corresponding state. init_states and init_inputs jointly specify the initial traceback memory of the equalizer. The table below shows the valid dimensions and values of the last three inputs, where numStates is $\mathrm{M}^{\mathrm{L}-1}, \mathrm{M}$ is the order of the modulation, and L is the number of symbols in the channel's impulse response (with no oversampling). To use default values for all of the last three arguments, specify them as [], [ ], [ ].

| Input <br> Argument | Meaning | Matrix Size | Range of <br> Values |
| :--- | :--- | :--- | :--- |
| init_metric | State metrics | 1 row, numStates <br> columns | Real numbers |
| init_states | Traceback <br> states | numStates rows, <br> tblen columns | Integers <br> between 0 and <br> numStates-1 |
| init_inputs | Traceback <br> inputs | numStates rows, <br> tblen columns | Integers between <br> 0 and M-1 |

[y,final_metric,final_states,final_inputs] = ... mlseeq(...,'cont',...) returns the normalized state metrics, traceback states, and traceback inputs, respectively, at the end of the traceback decoding process. final_metric is a vector with numStates elements that correspond to the final state metrics. final_states and final_inputs are both matrices of size numStates-by-tblen.

## Examples

The example below illustrates how to use reset operation mode on an upsampled signal.

```
M = 2; % Use 2-PAM.
const = pammod([0:M-1],M); % PAM constellation
tblen = 10; % Traceback depth for equalizer
nsamp = 2; % Number of samples per symbol
msgIdx = randint(1000,1,M); % Random bits
msg = upsample(pammod(msgIdx,M),nsamp); % Modulated message
chcoeffs = [.986; .845; .237; .12345+.31i]; % Channel coefficients
```

```
chanest = chcoeffs; % Channel estimate
filtmsg = filter(chcoeffs,1,msg); % Introduce channel distortion.
msgRx = awgn(filtmsg,5); % Add Gaussian noise.
msgEq = mlseeq(msgRx,chanest,const,tblen,'rst',nsamp); % Equalize.
msgEqIdx = pamdemod(msgEq,M); % Demodulate.
[nerrs ber] = biterr(msgIdx, msgEqIdx) % Bit error rate
```

The output is shown below. Your results might vary because this example uses random numbers.

```
nerrs =
 1
ber =
 0.0010
```

The example in "Example: Continuous Operation Mode" illustrates how to use the final state and initial state arguments when invoking mlseeq repeatedly.
The example in "Example: Using a Preamble" illustrates how to use a preamble.

## See Also

References
equalize, "Using MLSE Equalizers"
[1] Proakis, John G., Digital Communications, Fourth Edition, New York, McGraw-Hill, 2001.
[2] Steele, Raymond, Ed., Mobile Radio Communications, Chichester, England, John Wiley \& Sons, 1996.

## Purpose Package of modem classes

## Description

## See Also

modem.dpskdemod, modem.dpskmod, modem.genqamdemod, modem.genqammod, modem.mskdemod, modem.mskmod, modem.oqpskdemod, modem.oqpskmod, modem.pamdemod, modem. pammod, modem.pskdemod, modem.pskmod, modem.qamdemod, and modem. qammod

## Purpose

Construct DPSK demodulator object
Syntax
h = modem.dpskdemod(property1, value1, ...)
$\mathrm{h}=$ modem.dpskdemod(DPSKmod_object)
h = modem.dpskdemod(DPSKmod_object, property1, value1, ...)
$\mathrm{h}=$ modem.dpskdemod

## Description

The modem.dpskdemod function creates a modulator object that you can
use with the demodulate method to demodulate a signal. To learn more about the process for demodulating a signal, see "Using Modem Objects".
h = modem.dpskdemod(property1, value1, ...) constructs a DPSK demodulator object h with properties as specified by the property/value pairs.
$\mathrm{h}=$ modem.dpskdemod(DPSKmod_object) constructs a DPSK demodulator object h by reading the property values from the DPSK modulator object, DPSKmod_object. The properties that are unique to the DPSK demodulator object are set to default values.
h = modem.dpskdemod(DPSKmod_object, property1, value1, ...) constructs a DPSK demodulator object $h$ by reading the property values from the DPSK modulator object, DPSKmod_object. Additional properties are specified using property/value pairs.
$\mathrm{h}=$ modem.dpskdemod constructs a DPSK demodulator object h with default properties. It constructs a demodulator object for binary DPSK demodulation, and is equivalent to:

```
h = modem.dpskdemod('M', 2, 'PhaseRotation', 0, 'SymbolOrder', ...
 'binary', 'OutputType', 'integer', ...
 'InitialPhase', 0)
```


## Modem Demodulation Method

This object has a method demodulate that is used to demodulate signals.
The syntax is $y=$ demodulate $(h, x)$, where $h$ is the handle to a demodulator object and x is a signal. This syntax processes the

## modem.dpskdemod

baseband signal (complex envelope) x with the demodulator object and outputs binary words (bits) or symbols (integers) in signal y.
$x$ can be a multichannel signal. The columns of $x$ are considered individual channels, while the rows are time steps.
The demodulator object's property DecisionType should be set depending on whether you want hard or soft (LLR or approximate LLR) decisions. To allow for soft decisions, the demodulator object's property OutputType must be set to 'bit'.

For h.outputtype = 'bit', an output y of size $R \times(n B i t s \times C)$ is computed for an input x of size $R \times C$, where $n$ Bits $=\log _{2}(\mathrm{~h} . \mathrm{M})$.

For h.outputtype = `integer', an output y of size $R \times C$ is computed for an input x of size $R \times C$.
See Using Modem Objects for usage examples.

## Properties

A DPSK demodulator object has the following properties. All the properties are writable unless explicitly noted otherwise.

| Property | Description |
| :--- | :--- |
| Type | Type of modulation object. This is a fixed value, set <br> to 'DPSK Demodulator'. |
| M | Constellation size. |
| PhaseRotation | Specifies the phase rotation (rad) of the modulation. <br> In this case, the total per-symbol phase shift is the <br> sum of PhaseRotation and the phase generated by <br> the differential modulation. |
| Constellation | Ideal signal constellation. This property is not <br> writable and is automatically computed based on M. |


| Property | Description |
| :--- | :--- |
| SymbolOrder | Type of mapping employed for mapping symbols to <br> ideal constellation points. The choices are 'binary ' <br> (binary mapping), 'gray' (Gray mapping), and <br> 'user-defined' (custom mapping). |
| SymbolMapping | A list of integer values from 0 to M-1 that correspond <br> to ideal constellation points. This property <br> is writable only when SymbolOrder is set to <br> 'user-defined '. Otherwise, it is automatically <br> computed. |
| OutputType | Type of output to be computed by the DPSK <br> demodulator object. The choices are 'bit' <br> (bit/binary output), and 'integer ' (integer/symbol <br> output). |
| DecisionType | Type of output values to be computed by DPSK <br> demodulator object. This property is set to 'hard <br> decision' and is not writable. |
| InitialPhase | Initial phase state of the DPSK demodulator. <br> InitialPhase is used to calculate the first <br> demodulated symbol. |

## Methods

A DPSK demodulator object has the following four functions for inspection, management, and simulation:

- demodulate
- disp
- copy
- reset

See Using Modem Objects for details and examples of their use.

## modem.dpskdemod

## Examples

```
% Construct a demodulator object for 4-DPSK demodulation
% with initial phase pi/4.
h = modem.dpskdemod('M', 4, 'InitialPhase', pi/4)
% Construct an object to compute hard bit decisions of a
% baseband signal using 16-DPSK modulation. The modulated
% signal has a minimum phase rotation of pi/8 per symbol.
% The constellation has Gray mapping.
h = modem.dpskdemod('M', 16, 'SymbolOrder', 'Gray', ...
 'PhaseRotation', pi/8, 'OutputType', 'Bit')
% Construct a demodulator object from an existing modulator
% object for DPSK modulation in order to make bit decision.
modObj = modem.dpskmod('M', 8, 'InputType', 'Bit')
demodObj = modem.dpskdemod(modObj)
```


## See Also

modem, modem.dpskmod, modem.genqamdemod, modem.genqammod, modem.mskdemod, modem.mskmod, modem.oqpskdemod, modem.oqpskmod, modem. pamdemod, modem. pammod, modem.pskdemod, modem.pskmod, modem. qamdemod, and modem.qammod

Purpose<br>Syntax<br>\section*{Description}

Construct DPSK modulator object
h = modem.dpskmod(property1, value1, ...)
$\mathrm{h}=$ modem.dpskmod(DPSKdemod_object)
h = modem.dpskmod(DPSKdemod_object, property1, value1, ...)
$\mathrm{h}=$ modem.dpskmod
The modem.dpskmod function creates a modulator object that you can use with the modulate method to modulate a signal. To learn more about the process for modulating a signal, see "Using Modem Objects".
h = modem.dpskmod(property1, value1, ...) constructs a DPSK modulator object h with properties as specified by the property/value pairs.
h = modem.dpskmod(DPSKdemod_object) constructs a DPSK modulator object h by reading the property values from the DPSK demodulator object, DPSKdemod_object. The properties that are unique to the DPSK modulator object are set to default values.
h = modem.dpskmod(DPSKdemod_object, property1, value1, ...) constructs a DPSK modulator object h by reading the property values from the DPSK demodulator object, DPSKdemod_object. Additional properties are specified using property/value pairs.
$\mathrm{h}=$ modem.dpskmod constructs a DPSK modulator object h with default properties. It constructs a modulator object for binary DPSK modulation, and is equivalent to:

```
h = modem.dpskmod('M', 2, 'PhaseRotation', 0, ...
 'SymbolOrder', 'binary', ...
 'InputType', 'integer', 'InitialPhase', 0)
```


## Modem Modulation Method

This object has a method modulate that is used to modulate signals.
The syntax is $y=$ modulate $(h, x)$, where $h$ is the handle to a modulator object and $x$ is a signal. This syntax outputs the baseband signal (complex envelope) y.

## modem.dpskmod

$x$ can be a multichannel signal. The columns of $x$ are considered individual channels, while the rows are time steps.
When mapping input bits to symbols, the first bit is interpreted as the most significant bit.
For h.inputtype = `bit' (i.e., x represents binary input), nBits consecutive elements in each channel or column represent a symbol, where $n$ Bits $=\log _{2}(\mathrm{~h} . \mathrm{M})$. The number of elements in each channel must be an integer multiple of $n$ Bits, and elements of x must be 0 or 1 . For an input x of size $R \times C$, an outputy of size ( $R / n$ Bits) $\times C$ is computed.
For h.inputtype = integer' (i.e., $x$ represents symbol input), elements of $x$ must be in the range [ $0, \mathrm{~h} . \mathrm{M}-1$ ]. For an input x of size $R \times C$, an output y of size $R \times C$ is computed.

See Using Modem Objects for usage examples.

## Properties

A DPSK modulator object has the following properties. All the properties are writable unless explicitly noted otherwise.

| Property | Description |
| :--- | :--- |
| Type | Type of modulation object. This is a fixed value, <br> set to 'DPSK Modulator'. |
| M | Constellation size. |
| PhaseRotation | Specifies the phase rotation (rad) of the <br> modulation. In this case, the total per-symbol <br> phase shift is the sum of PhaseRotation and the <br> phase generated by the differential modulation. |
| Constellation | Ideal signal constellation. This property is not <br> writable and is automatically computed based <br> on M. |


| Property | Description |
| :--- | :--- |
| SymbolOrder | Type of mapping employed for mapping symbols <br> to ideal constellation points. The choices are <br> 'binary' (binary mapping), 'gray ' (Gray <br> mapping), and 'user-defined ' (custom <br> mapping). |
| SymbolMapping | A list of integer values from 0 to M-1 that <br> correspond to ideal constellation points. This <br> property is writable only when SymbolOrder <br> is set to 'user-defined '. Otherwise, it is <br> automatically computed. |
| InputType | Type of input to be processed by the <br> DPSK modulator object. The choices are <br> 'bit ' (bit/binary output), and ' integer' <br> (integer/symbol output). |
| InitialPhase | Initial phase state of the DPSK modulator. <br> InitialPhase is used to calculate the first <br> modulated symbol. |

## Methods

A DPSK demodulator object has the following four functions for inspection, management, and simulation:

- disp
- copy
- modulate
- reset

See "Using Modem Objects" for details and examples of their use.

## Examples

```
% Construct a modulator object for 4-DPSK modulation
% with initial phase pi/4.
h = modem.dpskmod('M', 4, 'InitialPhase', pi/4)
```


## modem.dpskmod

```
% Construct an object to modulate binary data using
% 16-DPSK modulation with pi/8 degrees minimum phase
% rotation per symbol. The constellation has Gray mapping.
h = modem.dpskmod('M', 16, 'SymbolOrder', 'Gray', ...
 'PhaseRotation', pi/8, 'InputType', 'Bit')
% Construct a modulator object from an existing demodulator
% object for DPSK demodulation in order to modulate binary
% inputs.
demodObj = modem.dpskdemod('M', 8) % existing DPSK
 % demodulator object
modObj = modem.dpskmod(demodObj)
```

modem, modem.dpskdemod, modem.genqamdemod, modem.genqammod, modem.mskdemod, modem.mskmod, modem.oqpskdemod, modem.oqpskmod, modem. pamdemod, modem. pammod, modem. pskdemod, modem.pskmod, modem. qamdemod, and modem. qammod

Construct General QAM demodulator object

```
h = modem.genqamdemod(property1, value1, ...)
h = modem.genqamdemod(GENQAMmod_object)
h = modem.genqamdemod(GENQAMmod_object, property1, value1,
 ...)
\(\mathrm{h}=\) modem.genqamdemod
```

The modem.genqamdemod function creates a modulator object that you can use with the demodulate method to demodulate a signal. To learn more about the process for demodulating a signal, see "Using Modem Objects".
$\mathrm{h}=$ modem.genqamdemod(property1, value1, ...) constructs a General QAM demodulator object $h$ with properties as specified by the property/value pairs.
$\mathrm{h}=$ modem.genqamdemod(GENQAMmod_object) constructs a General QAM demodulator object h by reading the property values from the General QAM modulator object, GENQAMmod_object. The properties that are unique to the General QAM demodulator object are set to default values.
h = modem.genqamdemod(GENQAMmod_object, property1, value1, ...) constructs a General QAM demodulator object h by reading the property values from the General QAM modulator object, GENQAMmod_object. Additional properties are specified using property/value pairs.
h = modem.genqamdemod constructs a General QAM demodulator object h with default properties. It constructs a demodulator object for $16-$ QAM modulation and is equivalent to:

```
h = modem.genqamdemod(('Constellation', [-3+j*3, -3+j*1, ...
 -3-j*1, -3-j*3, -1+j*3, -1+j*1, -1-j*1, -1-j*3, ...
 1+j*3, 1+j*1, 1-j*1, 1-j*3, 3+j*3, 3+j*1, 3-j*1, ...
 3-j*3], 'OutputType', 'integer', ...
 'DecisionType', 'hard decision')
```


## modem.genqamdemod

## Modem Demodulation Method

This object has a method demodulate that is used to demodulate signals.
The syntax is $y=$ demodulate $(h, x)$, where $h$ is the handle to a demodulator object and $x$ is a signal. This syntax processes the baseband signal (complex envelope) $x$ with the demodulator object and outputs binary words (bits) or symbols (integers) in signal $y$.
$x$ can be a multichannel signal. The columns of $x$ are considered individual channels, while the rows are time steps.

The demodulator object's property DecisionType should be set depending on whether you want hard or soft (LLR or approximate LLR) decisions. To allow for soft decisions, the demodulator object's property OutputType must be set to 'bit'.

For h.outputtype = `bit', an output y of size $R \times(n B i t s \times C)$ is computed for an input x of size $R \times C$, where $n$ Bits $=\log _{2}(\mathrm{~h} . \mathrm{M})$.

For h.outputtype = `integer', an output y of size $R \times C$ is computed for an input x of size $R \times C$.

See Using Modem Objects for usage examples.

## Properties

A General QAM demodulator object has the following properties. All the properties are writable unless explicitly noted otherwise.

| Property | Description |
| :--- | :--- |
| Type | Type of modulation object. This is a fixed value, <br> set to 'General QAM Demodulator'. |
| M | M-ary value. This property is not writable, <br> and is automatically computed based on <br> Constellation. |
| Constellation | Signal constellation. |


| Property | Description |
| :--- | :--- |
| OutputType | Type of output to be computed by the General <br> QAM demodulator object. The choices are <br> 'bit' (bit/binary output), and 'integer' <br> (integer/symbol output). |
| DecisionType | Type of output values to be computed by the <br> General QAM demodulator object. The choices <br> are 'hard decision' (hard decision values), <br> 'll' (log-likelihood ratio), and 'approximate <br> llr' (approximate log-likelihood ratio). |
| NoiseVariance | Noise variance of the received signal to be <br> processed by the General QAM demodulator <br> object. This is used to compute only the LLR <br> or approximate LLR. Hence, NoiseVariance is <br> visible only when DecisionType is set to 'llr' <br> or 'approximate llr'. If the NoiseVariance <br> value is very small, LLR computations may yield <br> Inf, - Inf, or NaN because the LLR algorithm <br> would involve computing exponentials of very <br> large or very small numbers using finite precision <br> arithmetic. In such cases, use approximate LLR, <br> as its algorithm does not involve computing <br> exponentials. |

## Methods

A General QAM demodulator object has the following functions for inspection, management, and simulation:

- demodulate
- disp
- copy

See "Using Modem Objects" for details and examples of their use.

Examples

```
% Construct a General QAM demodulator object with an
% equidistant 3-point constellation on the unit circle.
M = 3;
h = modem.genqamdemod('Constellation', exp(j*2*pi*[0:M-1]/M))
% Construct a General QAM demodulator object to compute
% log-likelihood ratio of a baseband signal using a two-tiered
% constellation. The estimated noise variance of input signal
% is 1.2.
h = modem.genqamdemod('Constellation', [exp(j*2*pi*[0:3]/4) ...
 2*exp(j*(2*pi*[0:3]/4+pi/4))], ...
 'OutputType', 'Bit', 'DecisionType', ...
 'LLR', 'NoiseVariance', 1.2)
plot(h.Constellation, '*');grid on;axis('equal',[-2 2 -2 2]);
% Construct a demodulator object from an existing modulator
% object for general QAM modulation in order to compute
% approximate log-likelihood ratio for a baseband signal
% whose estimated noise variance is 0.81.
modObj = modem.genqammod('Constellation', [-1 1 2*j -2*j], ...
 'InputType', 'Bit') % existing general QAM modulator object
demodObj = modem.genqamdemod(modObj, 'DecisionType', ...
 'Approximate LLR', 'NoiseVariance', 0.81)
```

See Also
modem, modem.dpskdemod, modem.dpskmod, modem.genqammod, modem.mskdemod, modem.mskmod, modem.oqpskdemod, modem.oqpskmod, modem. pamdemod, modem. pammod, modem.pskdemod, modem.pskmod, modem. qamdemod, and modem. qammod

Construct General QAM modulator object

```
h = modem.genqammod(property1, value1, ...)
h = modem.genqammod(GENQAMdemod_object)
h = modem.genqammod(GENQAMdemod_object, property1, value1,
 ...)
h = modem.genqammod
```

The modem. genqammod function creates a modulator object that you can use with the modulate method to modulate a signal. To learn more about the process for modulating a signal, see "Using Modem Objects".
h = modem.genqammod(property1, value1, ...) constructs a General QAM modulator object h with properties as specified by the property/value pairs.
h = modem.genqammod(GENQAMdemod_object) constructs a General QAM modulator object h by reading the property values from the General QAM demodulator object, GENQAMdemod_object. The properties that are unique to the General QAM modulator object are set to default values.
h = modem.genqammod(GENQAMdemod_object, property1, value1, ...) constructs a General QAM modulator object h by reading the property values from the General QAM demodulator object, GENQAMdemod_object. Additional properties are specified using property/value pairs.
$\mathrm{h}=$ modem.genqammod constructs a General QAM modulator object h with default properties. It constructs a modulator object for 16-QAM modulation, and is equivalent to:

```
h = modem.genqammod('Constellation', [-3+j*3, -3+j*1, ...
 -3-j*1, -3-j*3, -1+j*3, -1+j*1, -1-j*1, -1-j*3, ...
 1+j*3, 1+j*1, 1-j*1, 1-j*3, 3+j*3, 3+j*1, 3-j*1, ...
 3-j*3], 'InputType', 'integer')
```


## Modem Modulation Method

This object has a method modulate that is used to modulate signals.

## modem.genqammod

The syntax is $\mathrm{y}=$ modulate $(\mathrm{h}, \mathrm{x})$, where h is the handle to a modulator object and $x$ is a signal. This syntax outputs the baseband signal (complex envelope) y.
$x$ can be a multichannel signal. The columns of $x$ are considered individual channels, while the rows are time steps.

When mapping input bits to symbols, the first bit is interpreted as the most significant bit.

For h.inputtype = `bit' (i.e., x represents binary input), nBits consecutive elements in each channel or column represent a symbol, where $n$ Bits $=\log _{2}(\mathrm{~h} . \mathrm{M})$. The number of elements in each channel must be an integer multiple of $n$ Bits, and elements of x must be 0 or 1 . For an input x of size $R \times C$, an output y of size ( $R / n$ Bits) $\times C$ is computed.

For h.inputtype = `integer' (i.e., $x$ represents symbol input), elements of $x$ must be in the range [0, h.M-1]. For an input $x$ of size $R \times C$, an output y of size $R \times C$ is computed.

See Using Modem Objects for usage examples.

## Properties

"Using Modem Objects"
A General QAM modulator object has the following properties. All the properties are writable unless explicitly noted otherwise.

| Property | Description |
| :--- | :--- |
| Type | Type of modulation object. This is a fixed value, <br> set to 'General QAM Modulator' |
| M | M-ary value. This property is not writable, <br> and is automatically computed based on <br> Constellation. |


| Property | Description |
| :--- | :--- |
| Constellation | Signal constellation.. |
| InputType | Type of input to be processed by the General <br> QAM modulator object. The choices are |
|  | 'bit ' (bit/binary output), and 'integer' <br> (integer/symbol output). |

## Methods

## Examples

A General QAM modulator object has the following functions for inspection, management, and simulation:

- copy
- disp
- modulate
- reset

See "Using Modem Objects" for details and examples of their use.

```
% Construct a General QAM modulator object with an
% equidistant 3-point constellation on the unit circle.
M = 3;
h = modem.genqammod('Constellation', exp(j*2*pi*[0:M-1]/M))
% Construct a General QAM object to modulate binary data
% using a two-tiered constellation.
h = modem.genqammod('Constellation', [exp(j*2*pi*[0:3]/4) ...
 2*exp(j*(2*pi*[0:3]/4+pi/4))], 'InputType', 'Bit')
plot(h.Constellation, '*');grid on;axis('equal',[-2 2 -2 2]);
% Construct a modulator object from an existing
% demodulator object for general QAM demodulation in order
% to compute approximate log-likelihood ratio for a baseband
% signal whose estimated noise variance is 0.81.
demodObj = modem.genqamdemod('Constellation', [-1 1 2*j -2*j], ...
```


## modem.genqammod

```
 'OutputType', 'Bit')
modObj = modem.genqammod(demodObj)
```

See Also
modem, modem.dpskdemod, modem.dpskmod, modem.genqamdemod, modem.mskdemod, modem.mskmod, modem.oqpskdemod, modem.oqpskmod, modem. pamdemod, modem. pammod, modem.pskdemod, modem.pskmod, modem. qamdemod, and modem.qammod

## Purpose <br> Syntax

h = modem.mskdemod(property1, value1, ...)
h = modem.mskdemod(MSKmod_object)
h = modem.mskdemod(MSKmod_object, property1, value1, ...)
h = modem.mskdemod
Construct MSK demodulator object
h
The modem.mskdemod function creates a modulator object that you can use with the demodulate method to demodulate a signal. To learn more about the process for demodulating a signal, see "Using Modem Objects".
h = modem.mskdemod(property1, value1, ...) constructs an MSK demodulator object h with properties as specified by the property/value pairs.
h = modem.mskdemod(MSKmod_object) constructs an MSK demodulator object h by reading the property values from the MSK modulator object, MSKmod_object. The properties that are unique to the MSK demodulator object are set to default values.
h = modem.mskdemod(MSKmod_object, property1, value1, ...) constructs an MSK demodulator object $h$ by reading the property values from the MSK modulator object, MSKmod_object. Additional properties are specified using property/value pairs.
$\mathrm{h}=$ modem.mskdemod constructs an MSK demodulator object h with default properties. This syntax is equivalent to:

```
h = modem.mskdemod('Precoding', 'off', ...
 'SamplesPerSymbol', 8, 'OutputType', 'bit')
```

Note The MSK demodulator has a 2-bit delay.

## Modem Demodulation Method

This object has a method demodulate that is used to demodulate signals.

## modem.mskdemod

The syntax is $y=$ demodulate $(h, x)$, where $h$ is the handle to a demodulator object and x is a signal. This syntax processes the baseband signal (complex envelope) x with the demodulator object and outputs binary words (bits) or symbols (integers) in signal y.
$x$ can be a multichannel signal. The columns of $x$ are considered individual channels, while the rows are time steps.

The demodulator object's property DecisionType should be set depending on whether you want hard or soft (LLR or approximate LLR) decisions. To allow for soft decisions, the demodulator object's property OutputType must be set to 'bit'.

For h.outputtype $=$ 'bit', an output y of size $R \times(n B i t s \times C)$ is computed for an input x of size $R \times C$, where $n$ Bits $=\log _{2}(\mathrm{~h} . \mathrm{M})$.

For h.outputtype = `integer', an output y of size $R \times C$ is computed for an input x of size $R \times C$.

See Using Modem Objects for usage examples.

## Properties

An MSK demodulator object has the following properties. All the properties are writable unless explicitly noted otherwise.

| Property | Description |
| :--- | :--- |
| Type | Type of modulation object. This is a fixed value, <br> set to 'MSK Demodulator'. |
| M | Constellation size. This is a fixed value, set to 2. |
| Precoding | Specifies the type of the coherent MSK <br> demodulator. The choices are 'off' for <br> conventional coherent MSK, and 'on' for <br> precoded coherent MSK. |
| SamplesPerSymbol | Number of samples used to represent an MSK <br> symbol. |


| Property | Description |
| :--- | :--- |
| OutputType | Type of input to be processed by the <br> MSK demodulator object. The choices are <br> 'bit ' (bit/binary output), and ' integer' <br> (integer/symbol output). Because the MSK <br> constellation size is two, 'bit' and 'integer' <br> are equivalent. |
| DecisionType | Type of output values to be computed by MSK <br> demodulator object. This property is set to <br> 'hard decision ' and is not writable. |

## Methods

## Examples

An MSK demodulator object has the following four functions for inspection, management, and simulation:

- demodulate
- disp
- copy
- reset

See "Using Modem Objects" for details and examples of their use.
\% Construct an MSK demodulator object with five samples
\% per symbol.
h = modem.mskdemod('SamplesPerSymbol', 5)
\% Construct an MSK demodulator object with precoding. h = modem.mskdemod('Precoding', 'on')
\% Construct an MSK demodulator object from an existing \% MSK modulator object. modObj = modem.mskmod('SamplesPerSymbol', 6, ... 'Precoding', 'on') \% existing MSK modulator object demodObj $=$ modem.mskdemod(modObj)

## modem.mskdemod

```
% Modulate and demodulate a bit stream.
% Note the 2-bit delay.
demodulate(demodObj, modulate(modObj, ...
 [1 1 1 0 0 0 0 1 0 1 0]'))
```

modem, modem.dpskdemod, modem.dpskmod, modem.genqamdemod, modem.genqammod, modem.mskmod, modem.oqpskdemod, modem.oqpskmod, modem. pamdemod, modem. pammod, modem.pskdemod, modem.pskmod, modem.qamdemod, and modem.qammod

## Purpose

Construct MSK modulator object

## Syntax

h = modem.mskmod(property1, value1, ...)
h = modem.mskmod(MSKdemod_object)
h = modem.mskmod(MSKdemod_object, property1, value1, ...)
h = modem.mskmod

The modem.mskmod function creates a modulator object that you can use with the modulate method to modulate a signal. To learn more about the process for modulating a signal, see "Using Modem Objects".
h = modem.mskmod(property1, value1, ...) constructs an MSK modulator object h with properties as specified by the property/value pairs.
$\mathrm{h}=$ modem.mskmod(MSKdemod_object) constructs an MSK modulator object $h$ by reading the property values from the MSK demodulator object, MSKdemod_object. The properties that are unique to the MSK modulator object are set to default values.
h = modem.mskmod(MSKdemod_object, property1, value1, ...) constructs an MSK modulator object $h$ by reading the property values from the MSK demodulator object, MSKdemod_object. Additional properties are specified using property/value pairs.
$\mathrm{h}=$ modem.mskmod constructs an MSK modulator object h with default properties. This syntax is equivalent to:

```
h = modem.mskmod('Precoding', 'off', ...
 'SamplesPerSymbol', 8, 'InputType', 'bit')
```


## Modem Modulation Method

This object has a method modulate that is used to modulate signals.
The syntax is $y=$ modulate $(h, x)$, where $h$ is the handle to a modulator object and $x$ is a signal. This syntax outputs the baseband signal (complex envelope) y.
$x$ can be a multichannel signal. The columns of $x$ are considered individual channels, while the rows are time steps.

## modem.mskmod

When mapping input bits to symbols, the first bit is interpreted as the most significant bit.

For h.inputtype = `bit' (i.e., x represents binary input), nBits consecutive elements in each channel or column represent a symbol, where $n$ Bits $=\log _{2}(\mathrm{~h} . \mathrm{M})$. The number of elements in each channel must be an integer multiple of $n$ Bits, and elements of $x$ must be 0 or 1 . For an input x of size $R \times C$, an output y of size ( $R / n$ Bits) $\times C$ is computed.

For h.inputtype = `integer' (i.e., $x$ represents symbol input), elements of $x$ must be in the range [ $0, \mathrm{~h} . \mathrm{M}-1$ ]. For an input x of size $R \times C$, an output y of size $R \times C$ is computed.

See Using Modem Objects for usage examples.

## Properties

An MSK modulator object has the following properties. All the properties are writable unless explicitly noted otherwise.

| Property | Description |
| :--- | :--- |
| Type | Type of modulation object. This is a fixed value, <br> set to 'MSK Modulator'. |
| M | Constellation size. This is a fixed value, set to 2. |
| Precoding | Specifies the type of the coherent MSK <br> modulator. The choices are 'off ' for <br> conventional coherent MSK, and ' on' for <br> precoded coherent MSK. |
| SamplesPerSymbol | Number of samples used to represent an MSK <br> symbol. |
| InputType | Type of input to be processed by the <br> MSK modulator object. The choices are <br> 'bit ' (bit/binary input), and 'integer' <br> (integer/symbol input). Because the MSK <br> constellation size is two, 'bit ' and 'integer ' <br> are equivalent. |

## Methods <br> Examples

See Also

An MSK modulator object has the following functions for inspection, management, and simulation:

- copy
- disp
- modulate
- reset

See "Using Modem Objects" for details and examples of their use.

```
% Construct a modulator object for MSK modulation with
% five samples per symbol.
h = modem.mskmod('SamplesPerSymbol', 5)
% Construct an MSK modulator object with precoding and
% 10 samples per symbol.
h = modem.mskmod('Precoding', 'on', 'SamplesPerSymbol', 10)
% Construct a modulator object from an existing demodulator
% object for MSK demodulation in order to modulate binary
% inputs.
demodObj = modem.mskdemod('SamplesPerSymbol', 6) % existing
 % MSK demodulator object
modObj = modem.mskmod(demodObj)
```

modem, modem.dpskdemod, modem.dpskmod, modem.genqamdemod, modem.genqammod, modem.mskdemod, modem.oqpskdemod, modem. oqpskmod, modem. pamdemod, modem. pammod, modem. pskdemod, modem.pskmod, modem.qamdemod, and modem.qammod

## modem.oqpskdemod

## Purpose Construct OQPSK demodulator object

```
Syntax h = modem.oqpskdemod(property1, value1, ...)
h = modem.oqpskdemod(OQPSKmod_object)
h = modem.oqpskdemod(OQPSKmod_object, property1, value1, ...)
h = modem.oqpskdemod
```


## Description

The modem.oqpskdemod function creates a modulator object that you can use with the demodulate method to demodulate a signal. To learn more about the process for demodulating a signal, see "Using Modem Objects".
h = modem.oqpskdemod(property1, value1, ...) constructs an OQPSK demodulator object h with properties as specified by the property/value pairs.
$\mathrm{h}=$ modem.oqpskdemod(OQPSKmod_object) constructs an OQPSK demodulator object h by reading the property values from the OQPSK modulator object, OQPSKmod_object. The properties that are unique to the OQPSK demodulator object are set to default values.
h = modem.oqpskdemod(OQPSKmod_object, property1, value1, ...) constructs an OQPSK demodulator object $h$ by reading the property values from the OQPSK modulator object, OQPSKmod_object. Additional properties are specified using property/value pairs.
$\mathrm{h}=$ modem.oqpskdemod constructs an OQPSK demodulator object h with default properties. This syntax is equivalent to:

```
h = modem.oqpskdemod('PhaseOffset', 0, 'SymbolOrder', ...
 'binary', 'OutputType', 'integer', ...
 'DecisionType', 'hard decision')
```

Note OQPSK demodulators have a 1 symbol delay.

## Modem Demodulation Method

This object has a method demodulate that is used to demodulate signals.

The syntax is $y=$ demodulate $(h, x)$, where $h$ is the handle to a demodulator object and $x$ is a signal. This syntax processes the baseband signal (complex envelope) $x$ with the demodulator object and outputs binary words (bits) or symbols (integers) in signal y.
$x$ can be a multichannel signal. The columns of $x$ are considered individual channels, while the rows are time steps.

The demodulator object's property DecisionType should be set depending on whether you want hard or soft (LLR or approximate LLR) decisions. To allow for soft decisions, the demodulator object's property OutputType must be set to 'bit'.

For h.outputtype $=$ 'bit', an output y of size $R \times(n B i t s \times C)$ is computed for an input x of size $R \times C$, where $n$ Bits $=\log _{2}(\mathrm{~h} . \mathrm{M})$.

For h.outputtype = ${ }^{\text {integer }}$ ', an output y of size $R \times C$ is computed for an input x of size $R \times C$.

See Using Modem Objects for usage examples.

## Properties

An OQPSK demodulator object has the following properties. All the properties are writable unless explicitly noted otherwise.

| Property | Description |
| :--- | :--- |
| Type | Type of modulation object. This is a fixed value, <br> set to 'OQPSK Demodulator'. |
| M | M-ary value. This property is set to four and is <br> not writable. |
| PhaseOffset | Phase offset of ideal signal constellation in <br> radians. |
| Constellation | Ideal signal constellation. This property is not <br> writable and is automatically computed based <br> on M and PhaseOffset. |

## modem.oqpskdemod

| Property | Description |
| :---: | :---: |
| Symbolorder | Type of mapping employed for mapping symbols to ideal constellation points. The choices are 'binary' (binary mapping), 'gray' (Gray mapping), and 'user-defined' (custom mapping). |
| SymbolMapping | A list of integer values from 0 to $\mathrm{M}-1$ that correspond to ideal constellation points. This property is writable only when SymbolOrder is set to 'user-defined'. Otherwise, it is automatically computed. |
| OutputType | Type of output to be computed by the OQPSK demodulator object. The choices are 'bit' (bit/binary output), and 'integer (integer/symbol output). |
| DecisionType | Type of output values to be computed by the OQPSK demodulator object. The choices are 'hard decision' (hard decision values), 'llr' (log-likelihood ratio), and 'approximate $11 r^{\prime}$ (approximate log-likelihood ratio). |
| NoiseVariance | Noise variance of the received signal to be processed by the OQPSK demodulator object. This property is used to compute only the LLR or approximate LLR. Hence, NoiseVariance is visible only when DecisionType is set to 'llr' or 'approximate llr'. If the NoiseVariance value is very small, LLR computations may yield Inf, - Inf, or NaN because the LLR algorithm would involve computing exponentials of very large or very small numbers using finite precision arithmetic. In such cases, use approximate LLR, as its algorithm does not involve computing exponentials. |



## modem.oqpskdemod

See Also
modem, modem.dpskdemod, modem.dpskmod, modem.genqamdemod, modem.genqammod, modem.mskdemod, modem.mskmod, modem.oqpskmod, modem. pamdemod, modem. pammod, modem.pskdemod, modem.pskmod, modem.qamdemod, and modem.qammod

Purpose<br>Syntax<br>\section*{Description}

Construct OQPSK modulator object
h = modem.oqpskmod(property1, value1, ...)
h = modem.oqpskmod(OQPSKdemod_object)
h = modem.oqpskmod(OQPSKdemod_object, property1, value1, ...)
$\mathrm{h}=$ modem.oqpskmod

The modem.oqpskmod function creates a modulator object that you can use with the modulate method to modulate a signal. To learn more about the process for modulating a signal, see "Using Modem Objects".
h = modem.oqpskmod(property1, value1, ...) constructs an OQPSK modulator object h with properties as specified by the property/value pairs.
h = modem.oqpskmod(OQPSKdemod_object) constructs an OQPSK modulator object h by reading the property values from the OQPSK demodulator object, OQPSKdemod_object. The properties that are unique to the OQPSK modulator object are set to default values.
h = modem.oqpskmod(OQPSKdemod_object, property1, value1, ...) constructs an OQPSK modulator object h by reading the property values from the OQPSK demodulator object, OQPSKdemod_object. Additional properties are specified using property/value pairs.
$\mathrm{h}=$ modem.oqpskmod constructs an OQPSK modulator object h with default properties. This syntax is equivalent to:

```
h = modem.oqpskmod('PhaseOffset', 0, 'SymbolOrder', ...
 'binary', 'InputType', 'integer')
```

Note OQPSK modulators upsample by 2.

## Modem Modulation Method

This object has a method modulate that is used to modulate signals.

## modem.oqpskmod

The syntax is $y=$ modulate $(h, x)$, where $h$ is the handle to a modulator object and $x$ is a signal. This syntax outputs the baseband signal (complex envelope) y.
$x$ can be a multichannel signal. The columns of $x$ are considered individual channels, while the rows are time steps.

When mapping input bits to symbols, the first bit is interpreted as the most significant bit.

For h.inputtype = `bit' (i.e., x represents binary input), nBits consecutive elements in each channel or column represent a symbol, where $n$ Bits $=\log _{2}(\mathrm{~h} . \mathrm{m})$. The number of elements in each channel must be an integer multiple of $n$ Bits, and elements of x must be 0 or 1 . For an input x of size $R \times C$, an output y of size ( $R / n$ Bits) $\times C$ is computed.

For h.inputtype = `integer' (i.e., $x$ represents symbol input), elements of $x$ must be in the range [0, h.M-1]. For an input $x$ of size $R \times C$, an output y of size $R \times C$ is computed.

See Using Modem Objects for usage examples.

## Properties

An OQPSK modulator object has the following properties. All the properties are writable unless explicitly noted otherwise.

| Property | Description |
| :--- | :--- |
| Type | Type of modulation object. This is a fixed <br> value, set to 'OQPSK Modulator '. |
| M | M-ary value that is set to four and is not <br> writable. |
| PhaseOffset | Phase offset of ideal signal constellation in <br> radians. |
| Constellation | Ideal signal constellation. This property is not <br> writable and is automatically computed based <br> on M and PhaseOffset. |


| Property | Description |
| :--- | :--- |
| SymbolOrder | Type of mapping employed for mapping <br> symbols to ideal constellation points. The <br> choices are 'binary ' (binary mapping), 'gray ' <br> (Gray mapping), and 'user-defined' (custom <br> mapping). |
| SymbolMapping | A list of integer values from 0 to M-1 that <br> correspond to ideal constellation points. This <br> property is writable only when SymbolOrder <br> is set to 'user-defined '. Otherwise, it is <br> automatically computed. |
| InputType | Type of input to be processed by the <br> OQPSK modulator object. The choices are |
| 'bit' (bit/binary output), and 'integer' <br> (integer/symbol output). |  |

## Methods

## Examples

An OQPSK modulator object has the following functions for inspection, management, and simulation:

- copy
- disp
- modulate
- reset

See "Using Modem Objects" for details and examples of their use.

```
% Construct a modulator object for OQPSK modulation
% with default constellation .
h = modem.oqpskmod
% Construct an object to modulate binary data using
% OQPSK modulation. The constellation has Gray mapping
% and is shifted by -pi/16 radians.
```


## modem.oqpskmod

```
h = modem.oqpskmod('PhaseOffset', -pi/16, ...
 'SymbolOrder', 'Gray', 'InputType', 'Bit')
% Construct a modulator object from an existing demodulator
% object for OQPSK demodulation in order to modulate binary
% inputs.
demodObj = modem.oqpskdemod('PhaseOffset', pi/3)
modObj = modem.oqpskmod(demodObj, 'InputType', 'Bit')
```

See Also
modem, modem.dpskdemod, modem.dpskmod, modem.genqamdemod, modem.genqammod, modem.mskdemod, modem.mskmod, modem.oqpskdemod, modem. pamdemod, modem. pammod, modem.pskdemod, modem.pskmod, modem.qamdemod, and modem.qammod

Construct PAM demodulator object

```
h = modem.pamdemod(property1, value1, ...)
h = modem.pamdemod(PAMmod_object)
h = modem.pamdemod(PAMmod_object, property1, value1, ...)
h = modem.pamdemod
```

The modem. pamdemod function creates a modulator object that you can use with the demodulate method to demodulate a signal. To learn more about the process for demodulating a signal, see "Using Modem Objects".
h = modem.pamdemod(property1, value1, ...) constructs a PAM demodulator object h with properties as specified by the property/value pairs.
h = modem. pamdemod(PAMmod_object) constructs a PAM demodulator object $h$ by reading the property values from the PAM modulator object, PAMmod_object. The properties that are unique to the PAM demodulator object are set to default values.
h = modem.pamdemod(PAMmod_object, property1, value1, ...) constructs a PAM demodulator object h by reading the property values from the PAM modulator object, PAMmod_object. Additional properties are specified using property/value pairs.
$\mathrm{h}=$ modem. pamdemod constructs a PAM demodulator object h with default properties. It constructs a demodulator object for BPAM demodulation, and is equivalent to:

```
h = modem.pamdemod('M', 2, 'SymbolOrder', 'binary', ...
 'OutputType', 'integer', 'DecisionType', 'hard decision')
```


## Modem Demodulation Method

This object has a method demodulate that is used to demodulate signals.
The syntax is $\mathrm{y}=$ demodulate $(\mathrm{h}, \mathrm{x})$, where h is the handle to a demodulator object and $x$ is a signal. This syntax processes the baseband signal (complex envelope) $x$ with the demodulator object and outputs binary words (bits) or symbols (integers) in signal $y$.

## modem.pamdemod

$x$ can be a multichannel signal. The columns of $x$ are considered individual channels, while the rows are time steps.

The demodulator object's property DecisionType should be set depending on whether you want hard or soft (LLR or approximate LLR) decisions. To allow for soft decisions, the demodulator object's property OutputType must be set to 'bit'.

For h.outputtype $=$ 'bit', an output y of size $R \times(n B i t s \times C)$ is computed for an input x of size $R \times C$, where $n$ Bits $=\log _{2}(\mathrm{~h} . \mathrm{M})$.

For h.outputtype = `integer', an output y of size $R \times C$ is computed for an input x of size $R \times C$.
See Using Modem Objects for usage examples.

## Properties

An PAM demodulator object has the following properties. All the properties are writable unless explicitly noted otherwise.

| Property | Description |
| :--- | :--- |
| Type | Type of modulation object. This is a fixed <br> value, set to 'PAM Demodulator '. |
| M | M-ary value. |
| Constellation | Ideal signal constellation. This property is not <br> writable and is automatically computed based <br> on M. |
| SymbolOrder | Type of mapping employed for mapping <br> symbols to ideal constellation points. The <br> choices are 'binary ' (binary mapping), 'gray ' <br> (Gray mapping), and 'user-defined ' (custom <br> mapping). |
| OutputType | Type of output to be computed by the <br> PAM demodulator object. The choices are <br> 'bit ' (bit/binary output), and 'integer' <br> (integer/symbol output). |


| Property | Description |
| :--- | :--- |
| DecisionType | Type of output values to be computed by the <br> PAM demodulator object. The choices are <br> 'hard decision' (hard decision values), <br> 'llr' (log-likelihood ratio), and ' approximate <br> llr' (approximate log-likelihood ratio). |
| NoiseVariance | Noise variance of the received signal to be <br> processed by the PAM demodulator object. <br> This is used to compute only the LLR or <br> approximate LLR. Hence, NoiseVariance is <br> visible only when DecisionType is set to 'llr' <br> or 'approximate llr'. If the NoiseVariance <br> value is very small, LLR computations <br> may yield Inf, - Inf, or NaN because the <br> LLR algorithm would involve computing <br> exponentials of very large or very small |
| numbers using finite precision arithmetic. |  |

## Methods

Examples

A PAM demodulator object has the following four functions for inspection, management, and simulation:

- demodulate
- disp
- copy

See "Using Modem Objects" for details and examples of their use.

> \% Construct a demodulator object for $4-\mathrm{PAM}$ demodulation.
> $\mathrm{h}=$ modem. pamdemod('M', 4)

[^2]
## modem.pamdemod

```
% a baseband signal using 16-PAM modulation. The
% constellation has Gray mapping.
% The estimated noise variance of input signal is 1.2.
h = modem.pamdemod('M', 16, 'SymbolOrder', 'Gray', ...
 'OutputType', 'Bit', 'DecisionType', 'LLR', ...
 'NoiseVariance', 1.2)
% Construct a demodulator object from an existing modulator
% object for PAM modulation in order to compute approximate
% log-likelihood ratio for a baseband signal whose estimated
% noise variance is 0.81.
modObj = modem.pammod('M', 8, 'InputType', 'Bit')
demodObj = modem.pamdemod(modObj, 'DecisionType', ...
 'Approximate LLR', 'NoiseVariance', 0.81)
```

modem, modem.dpskdemod, modem.dpskmod, modem.genqamdemod, modem.genqammod, modem.mskdemod, modem.mskmod, modem.oqpskdemod, modem.oqpskmod, , modem.pskdemod, modem.pskmod, modem.qamdemod, and modem.qammod

## Purpose <br> Syntax <br> Description

Construct PAM modulator object
h = modem.pammod(property1, value1, ...)
h = modem.pammod(PAMdemod_object)
h = modem.pammod(PAMdemod_object, property1, value1, ...)
h = modem.pammod

The modem. pammod function creates a modulator object that you can use with the modulate method to modulate a signal. To learn more about the process for modulating a signal, see "Using Modem Objects".
h = modem.pammod(property1, value1, ...) constructs a PAM modulator object h with properties as specified by the property/value pairs.
$\mathrm{h}=$ modem. pammod(PAMdemod_object) constructs a PAM modulator object $h$ by reading the property values from the PAM demodulator object, PAMdemod_object. The properties that are unique to the PAM modulator object are set to default values.
h = modem.pammod(PAMdemod_object, property1, value1, ...) constructs a PAM modulator object h by reading the property values from the PAM demodulator object, PAMdemod_object. Additional properties are specified using property/value pairs.
$\mathrm{h}=$ modem. pammod constructs a PAM modulator object h with default properties. It constructs a modulator object for BPAM modulation, and is equivalent to:

```
h = modem.pammod('M', 2, 'SymbolOrder', 'binary', ...
 'InputType', 'integer')
```


## Modem Modulation Method

This object has a method modulate that is used to modulate signals.
The syntax is $y=$ modulate $(h, x)$, where $h$ is the handle to a modulator object and $x$ is a signal. This syntax outputs the baseband signal (complex envelope) y.
$x$ can be a multichannel signal. The columns of $x$ are considered individual channels, while the rows are time steps.

When mapping input bits to symbols, the first bit is interpreted as the most significant bit.
For h.inputtype = `bit' (i.e., x represents binary input), nBits consecutive elements in each channel or column represent a symbol, where $n$ Bits $=\log _{2}(\mathrm{~h} . \mathrm{M})$. The number of elements in each channel must be an integer multiple of $n$ Bits, and elements of x must be 0 or 1 . For an input x of size $R \times C$, an output y of size ( $R / n B i t s$ ) $\times C$ is computed.
For h.inputtype = integer' (i.e., $x$ represents symbol input), elements of $x$ must be in the range [ $0, \mathrm{~h} . \mathrm{M}-1$ ]. For an input x of size $R \times C$, an output y of size $R \times C$ is computed.

See Using Modem Objects for usage examples.

## Properties

A PAM modulator object has the following properties. All the properties are writable unless explicitly noted otherwise.

| Property | Description |
| :--- | :--- |
| Type | Type of modulation object. This is a fixed value, <br> set to 'PAM Modulator' |
| $M$ | M-ary value. |
| Constellation | Ideal signal constellation. This property is not <br> writable and is automatically computed based <br> on M and PhaseOffset. |
| SymbolOrder | Type of mapping employed for mapping <br> symbols to ideal constellation points. The <br> choices are 'binary' (binary mapping), 'gray ' <br> (Gray mapping), and 'user-defined ' (custom <br> mapping). |


| Property | Description |
| :--- | :--- |
| Symbolmapping | A list of integer values from 0 to M-1 that <br> correspond to ideal constellation points. This <br> property is writable only when SymbolOrder <br> is set to 'user-defined '. Otherwise, it is <br> automatically computed. |
| InputType | Type of input to be processed by the <br> PAM modulator object. The choices are <br> 'bit ' (bit/binary output), and 'integer' <br> (integer/symbol output). |

## Methods

## Examples

A PAM modulator object has the following functions for inspection, management, and simulation:

- copy
- disp
- modulate

See "Using Modem Objects" for details and examples of their use.

```
% Construct a modulator object for 4-PAM modulation.
h = modem.pammod('M', 4)
% Construct an object to modulate binary data using
% 16-PAM modulation.
% The constellation has Gray mapping.
h = modem.pammod('M', 16, 'SymbolOrder', 'Gray', ...
 'InputType', 'Bit')
% Construct a modulator object from an existing
% demodulator object for PAM demodulation in order to
% modulate binary inputs.
demodObj = modem.pamdemod('M', 8)
modObj = modem.pammod(demodObj, 'InputType', 'Bit')
```

See Also
modem, modem.dpskdemod, modem.dpskmod, modem.genqamdemod, modem.genqammod, modem.mskdemod, modem.mskmod, modem.oqpskdemod, modem.oqpskmod, modem. pamdemod, modem. pskdemod, modem. pskmod, modem.qamdemod, and modem.qammod

Construct PSK demodulator object

```
h = modem.pskdemod(M)
h = modem.pskdemod(M, phaseoffset)
h = modem.pskdemod(property1, value1, ...)
h = modem.pskdemod
h = modem.pskdemod(pskmod_object)
h = modem.pskdemod(pskmod_object, property1, value1, ...)
```

The modem.pskdemod function creates a demodulator object that you can use with the demodulate method to demodulate a signal. To learn more about the process for demodulating a signal, see "Using Modem Objects".
$\mathrm{h}=$ modem.pskdemod(M) constructs a PSK demodulator object h for M-ary demodulation.
$\mathrm{h}=$ modem.pskdemod(M, phaseoffset) constructs a PSK demodulator object h whose constellation has a phase offset of phaseoffset radians.
h = modem.pskdemod(property1, value1, ...) constructs a PSK demodulator object $h$ with properties as specified by the property/value pairs. If a property is not specified, it is assigned a default value. See the following section on properties.
$\mathrm{h}=$ modem.pskdemod constructs a PSK demodulator object h with default properties. It constructs a demodulator object for BPSK demodulation and is equivalent to:

```
h = modem.pskdemod('M', 2, 'PhaseOffset', 0, ...
 'SymbolOrder', 'binary', 'OutputType', 'integer', ...
 'DecisionType', 'hard decision')
```

h = modem.pskdemod(pskmod_object) constructs a PSK demodulator object $h$ by reading the property values from the pskmod_object PSK modulator object. The properties that are unique to the PSK demodulator object are set to default values.
h = modem.pskdemod(pskmod_object, property1, value1, ...) constructs a PSK demodulator object $h$ by reading the property values

## modem.pskdemod

from the pskmod_object PSK modulator object. Additional properties are specified by the property/value pairs.

## Modem Demodulation Method

This object has a method demodulate that is used to demodulate signals.
The syntax is $y=$ demodulate $(h, x)$, where $h$ is the handle to a demodulator object and $x$ is a signal. This syntax processes the baseband signal (complex envelope) $x$ with the demodulator object and outputs binary words (bits) or symbols (integers) in signal $y$.
$x$ can be a multichannel signal. The columns of $x$ are considered individual channels, while the rows are time steps.
The demodulator object's property DecisionType should be set depending on whether you want hard or soft (LLR or approximate LLR) decisions. To allow for soft decisions, the demodulator object's property OutputType must be set to 'bit'.

For h.outputtype = 'bit', an output y of size $R \times(n B i t s \times C)$ is computed for an input x of size $R \times C$, where $n$ Bits $=\log _{2}(\mathrm{~h} . \mathrm{M})$.

For h.outputtype $=$ `integer ', an output y of size $R \times C$ is computed for an input x of size $R \times C$.
See Using Modem Objects for usage examples.

## Properties

The following table describes the properties of the PSK demodulator object.

| Property | Description |
| :--- | :--- |
| Type | Type of modulation object. This property is a <br> fixed value, set to 'PSK Demodulator '. |
| M | M-ary value. Default is 2. |
| PhaseOffset | Phase offset of ideal signal constellation in <br> radians. Default is 0. |


| Property | Description |
| :--- | :--- |
| Constellation | Ideal signal constellation. This property is not <br> writable and is automatically computed based <br> on the M and PhaseOffset properties. |
| SymbolOrder | Type of mapping employed for mapping <br> symbols to ideal constellation points. The <br> choices are 'binary ' (binary mapping), <br> 'gray ' (Gray mapping), and 'user-defined ' <br> (custom mapping). Default is 'binary '. |
| SymbolMapping | Symbol mapping values corresponding to <br> ideal constellation points. This property is <br> writable only when SymbolOrder is set to <br> 'user-defined '. Each element of the symbol <br> mapping vector contains the symbol mapped to <br> the corresponding element of the constellation <br> vector. Thus, the first element of the symbol <br> mapping vector contains the symbol mapped to <br> the first element of the constellation vector, the |
| second element contains the symbol mapped to |  |
| the second element of the constellation vector, |  |
| and so on. |  |

## modem.pskdemod

| Property | Description |
| :--- | :--- |
| DecisionType | Type of output values to be computed by the <br> PSK demodulator object. The choices are <br> 'hard decision' (hard-decision values), <br> 'llr' (log-likelihood ratio), and ' approximate <br> llr' (approximate log-likelihood ratio). <br> Default is 'hard decision '. |
| NoiseVariance | Noise variance of the channel or equalized <br> signal to be processed by the PSK demodulator <br> object. The noise variance is used to <br> compute LLR or Approximate LLR, hence <br> NoiseVariance is visible only when <br> DecisionType is set to 'llr' or 'approximate <br> llr'. If the NoiseVariance value is very <br> small, LLR computations may yield Inf, -Inf, <br> or NaN because the LLR algorithm would <br> involve computing exponentials of very large <br> or very small numbers using finite precision <br> arithmetic. In such cases, use approximate |
| LLR, as its algorithm does not involve |  |
| computing exponentials. |  |

## Methods

Algorithms

A PSK demodulator object has the following four functions for inspection, management, and simulation:

- copy
- disp
- reset

See "Using Modem Objects" for details and examples of their use.
See "Exact LLR Algorithm" and "Approximate LLR Algorithm".

## Examples

See Also

```
% Construct a demodulator object for QPSK demodulation.
h = modem.pskdemod(4)
% Construct an object to compute log-likelihood ratio of
% a baseband signal using 16-PSK modulation. The
% constellation has Gray mapping and is shifted by -pi/16
% radians. The estimated noise variance of input
% signal is 1.2.
h = modem.pskdemod('M', 16, 'PhaseOffset', -pi/16, ...
 'SymbolOrder', 'Gray', 'OutputType', 'Bit', ...
 'DecisionType', 'LLR', 'NoiseVariance', 1.2)
% Construct a demodulator object from an existing
% modulator object for PSK modulation in order to
% compute approximate log-likelihood ratio for
% a baseband signal whose estimated noise variance is 0.81.
modObj = modem.pskmod('M', 8, 'InputType', 'Bit')
demodObj = modem.pskdemod(modObj, 'DecisionType', ...
 'Approximate LLR', 'NoiseVariance', 0.81)
```

modem, modem.dpskdemod, modem.dpskmod, modem.genqamdemod, modem.genqammod, modem.mskdemod, modem.mskmod, modem.oqpskdemod, modem.oqpskmod, modem. pamdemod, modem. pammod, modem.pskmod, modem.qamdemod, and modem.qammod

## modem.pskmod

Purpose Construct PSK modulator object
Syntax
Description
h = modem.pskmod(M)
h = modem.pskmod(M, phaseoffset)
h = modem.pskmod(property1, value1, ...)
h = modem.pskmod(PSKdemod_object)
h = modem.pskmod(PSKdemod_object, property1, value1, ...)
h = modem.pskmod

The modem.pskmod function (constructor) creates a modulator object that you can use with the modulate method to modulate a signal. To learn more about the process for modulating a signal, see "Using Modem Objects".
$\mathrm{h}=$ modem. pskmod (M) constructs a PSK modulator object h for M-ary modulation.
h = modem.pskmod(M, phaseoffset) constructs a PSK modulator object $h$ whose constellation has a phase offset of phaseoffset radians.
h = modem.pskmod(property1, value1, ...) constructs a PSK modulator object $h$ with properties as specified by the property/value pairs. If a property is not specified, it is assigned a default value. See the following section on properties.
h = modem.pskmod(PSKdemod_object) constructs a PSK modulator object h by reading the property values from the PSK demodulator object, PSKdemod_object. The properties that are unique to the PSK modulator object are set to default values.
h = modem.pskmod(PSKdemod_object, property1, value1, ...) constructs a PSK modulator object h by reading the property values from the PSK demodulator object, PSKdemod_object. Additional properties are specified using property/value pairs.
$\mathrm{h}=$ modem. pskmod constructs a PSK modulator object h with default properties. It constructs a modulator object for BPSK modulation and is equivalent to:

```
h = modem.pskmod('M', 2, 'PhaseOffset', 0, 'SymbolOrder',...
```

```
'binary', 'InputType', 'integer')
```


## Modem Modulation Method

This object has a method modulate that is used to modulate signals.
The syntax is $y=$ modulate $(h, x)$, where $h$ is the handle to a modulator object and $x$ is a signal. This syntax outputs the baseband signal (complex envelope) y.
$x$ can be a multichannel signal. The columns of $x$ are considered individual channels, while the rows are time steps.

When mapping input bits to symbols, the first bit is interpreted as the most significant bit.

For h.inputtype = `bit' (i.e., x represents binary input), nBits consecutive elements in each channel or column represent a symbol, where \(n\) Bits \(=\log _{2}(\mathrm{~h} . \mathrm{M})\). The number of elements in each channel must be an integer multiple of \(n\) Bits, and elements of \(x\) must be 0 or 1 . For an input x of size \(R \times C\), an output y of size ( \(R / n\) Bits) \(\times C\) is computed. For h.inputtype = `integer' (i.e., $x$ represents symbol input), elements of $x$ must be in the range [ $0, \mathrm{~h} . \mathrm{M}-1$ ]. For an input x of size $R \times C$, an output y of size $R \times C$ is computed.
See Using Modem Objects for usage examples.

## Properties

The following table describes the properties of the PSK modulator object.

| Property | Description |
| :--- | :--- |
| Type | Type of modulation object. This property is a fixed <br> value, set to 'PSK Modulator '. |
| M | M-ary value. Default is 2. |
| PhaseOffset | Phase offset of ideal signal constellation in radians. <br> Default is 0. |

## modem.pskmod

| Property | Description |
| :--- | :--- |
| Constellation | Ideal signal constellation. This property is not <br> writable and is automatically computed based on the <br> M and Phase0ffset properties. |
| SymbolOrder | Type of mapping employed for mapping symbols to <br> ideal constellation points. The choices are 'binary ' <br> (binary mapping), 'gray ' (Gray mapping), and <br> 'user-defined ' (custom mapping). Default is <br> 'binary '. |
| Symbolmapping | Symbol mapping values corresponding to ideal <br> constellation points. This property is writable only <br> when SymbolOrder is set to ' user-defined '. Each <br> element of the symbol mapping vector contains the <br> symbol mapped to the corresponding element of the <br> constellation vector. Thus, the first element of the <br> symbol mapping vector contains the symbol mapped <br> to the first element of the constellation vector, the <br> second element contains the symbol mapped to the <br> second element of the constellation vector, and so on. |
| InputType | Type of input to be processed by the PSK modulator <br> object. The choices are 'bit ' (bit/binary output), <br> and 'integer' (integer/symbol output). Default is <br> 'integer '. |

## Methods

A General QAM modulator object has the following functions for inspection, management, and simulation:

- copy
- disp
- modulate

See "Using Modem Objects" for details and examples of their use.

## Examples

```
% Construct a modulator object for QPSK modulation.
h = modem.pskmod(4)
% Construct a modulator object for 8-PSK modulation with
% constellation shifted by pi/8 radians.
h = modem.pskmod(8, pi/8)
% Construct an object to modulate binary data using 16-PSK .
% modulation. The constellation has Gray mapping and is
% shifted by -pi/16 radians.
h = modem.pskmod('M', 16, 'PhaseOffset', -pi/16, ...
 'SymbolOrder', 'Gray', 'InputType', 'Bit')
```

See Also
modem, modem.dpskdemod, modem.dpskmod, modem.genqamdemod, modem.genqammod, modem.mskdemod, modem.mskmod, modem.oqpskdemod, modem.oqpskmod, modem.pamdemod, modem. pammod, modem.pskdemod, modem. qamdemod, and modem. qammod

## modem.qamdemod

Purpose Construct QAM demodulator object
Syntax
h = modem.qamdemod(M)
h = modem.qamdemod(M, phaseoffset)
h = modem.qamdemod(property1, value1, ...)
h = modem.qamdemod(qammod_object)
h = modem.qamdemod(qammod_object, property1, value1, ...)
$\mathrm{h}=$ modem.qamdemod

## Description

The modem.qamdemod function creates a demodulator object that you can use with the demodulate method to demodulate a signal. To learn more about the process for demodulating a signal, see "Using Modem Objects".
$\mathrm{h}=$ modem.qamdemod $(\mathrm{M})$ constructs a QAM demodulator object h for M -ary demodulation.
h = modem.qamdemod(M, phaseoffset) constructs a QAM demodulator object h whose constellation has a phase offset of phaseoffset radians.
h = modem.qamdemod(property1, value1, ...) constructs a QAM demodulator object $h$ with properties as specified by the property/value pairs. If a property is not specified, it is assigned a default value. See the following section on properties.
h = modem.qamdemod(qammod_object) constructs a QAM demodulator object h by reading the property values from the qammod_object QAM modulator object. The properties that are unique to the QAM demodulator object are set to default values.
h = modem.qamdemod(qammod_object, property1, value1, ...) constructs a QAM demodulator object h by reading the property values from the qammod_object QAM modulator object. Additional properties are specified by the property/value pairs.
$\mathrm{h}=$ modem. qamdemod constructs a QAM demodulator object h with default properties. It constructs a demodulator object for 16-QAM demodulation and is equivalent to:

```
h = modem.qamdemod('M', 16, 'PhaseOffset', 0, 'SymbolOrder',...
```

```
'binary', 'OutputType', 'integer', 'DecisionType',...
'hard decision')
```


## Modem Demodulation Method

This object has a method demodulate that is used to demodulate signals.
The syntax is $y=$ demodulate $(h, x)$, where $h$ is the handle to a demodulator object and x is a signal. This syntax processes the baseband signal (complex envelope) $x$ with the demodulator object and outputs binary words (bits) or symbols (integers) in signal y.
$x$ can be a multichannel signal. The columns of $x$ are considered individual channels, while the rows are time steps.

The demodulator object's property DecisionType should be set depending on whether you want hard or soft (LLR or approximate LLR) decisions. To allow for soft decisions, the demodulator object's property OutputType must be set to 'bit'.

For h.outputtype = 'bit', an output y of size $R \times(n B i t s \times C)$ is computed for an input x of size $R \times C$, where $n$ Bits $=\log _{2}(\mathrm{~h} . \mathrm{M})$.

For h.outputtype = 'integer', an output y of size $R \times C$ is computed for an input x of size $R \times C$.

See Using Modem Objects for usage examples.

## Properties

The following table describes the properties of the QAM demodulator object.

| Property | Description |
| :--- | :--- |
| Type | Type of modulation object. This property is a fixed <br> value, set to 'QAM Demodulator ' |
| M | M-ary value. Default is 2. |
| PhaseOffset | Phase offset of ideal signal constellation in radians. <br> Default is 0. |

## modem.qamdemod

| Property | Description |
| :--- | :--- |
| Constellation | Ideal signal constellation. This property is not <br> writable and is automatically computed based on the <br> M and Phase0ffset properties. |
| SymbolOrder | Type of mapping employed for mapping symbols to <br> ideal constellation points. The choices are 'binary ' <br> (binary mapping), 'gray ' (Gray mapping), and <br> 'user-defined ' (custom mapping). Default is <br> 'binary '. |
| Symbolmapping | Symbol mapping values corresponding to ideal <br> constellation points. This property is writable only <br> when SymbolOrder is set to 'user-defined '. Each <br> element of the symbol mapping vector contains the <br> symbol mapped to the corresponding element of the <br> constellation vector. Thus, the first element of the <br> symbol mapping vector contains the symbol mapped <br> to the first element of the constellation vector, the <br> second element contains the symbol mapped to the <br> second element of the constellation vector, and so on. |
| OutputType | Type of output to be computed by the QAM <br> demodulator object. The choices are 'bit' <br> (bit/binary output), and 'integer' (integer/symbol <br> output). Default is ' integer '. |


| Property | Description |
| :--- | :--- |
| DecisionType | Type of output values to be computed by the <br> QAM demodulator object. The choices are <br> 'hard decision' (hard-decision values), 'llr' <br> (log-likelihood ratio), and 'approximate llr' <br> (approximate log-likelihood ratio). Default is 'hard <br> decision'. |
| NoiseVariance | Noise variance of the channel or equalized signal <br> to be processed by the QAM demodulator object. <br> The noise variance is used to compute LLR <br> or Approximate LLR, hence NoiseVariance is <br> visible only when DecisionType is set to 'llr' or <br> 'approximate llr'. If the NoiseVariance value is <br> very small (i.e., SNR is very high), LLR computations <br> may yield Inf or Inf because the LLR algorithm <br> would involve computing exponentials of very <br> large or very small numbers using finite precision <br> arithmetic. In such cases, use of approximate LLR <br> is recommended, as its algorithm does not involve <br> computing exponentials. |

## Methods <br> Algorithms

Examples

A QAM demodulator object has the following functions for inspection, management, and simulation:

- copy
- demodulate
- disp

See "Using Modem Objects" for details and examples of their use.
See "Exact LLR Algorithm" and "Approximate LLR Algorithm".

[^3]
## modem.qamdemod

```
% Construct an object to compute log-likelihood ratio of a
% baseband signal using 64-QAM modulation. The constellation
% has Gray mapping.
% The estimated noise variance of input signal is 12.2.
h = modem.qamdemod('M', 64, 'SymbolOrder', 'Gray', ...
 'OutputType', 'Bit', 'DecisionType', 'LLR', ...
 'NoiseVariance', 12.2)
% Construct a demodulator object from an existing modulator
% object for QAM modulation in order to compute approximate
% log-likelihood ratio for a baseband signal whose estimated
% noise variance is 3.81.
modObj = modem.qammod('M', 8, 'InputType', 'Bit')
demodObj = modem.qamdemod(modObj, 'DecisionType', ...
 'Approximate LLR', 'NoiseVariance', 3.81)
```


## See Also

modem, modem.dpskdemod, modem.dpskmod, modem.genqamdemod, modem.genqammod, modem.mskdemod, modem.mskmod, modem.oqpskdemod, modem.oqpskmod, modem.pamdemod, modem. pammod, modem. pskdemod, modem. pskmod, and modem.qammod

Purpose<br>Syntax<br>\section*{Description}

Construct QAM modulator object
h = modem.qammod(M)
h = modem.qammod(M, phaseoffset)
h = modem.qammod(property1, value1, ...)
h = modem.qammod(QAMdemod_object)
h = modem.qammod(QAMdemod_object, property1, value1, ...)
$\mathrm{h}=$ modem.qammod

The modem. qammod function creates a modulator object that you can use with the modulate method to modulate a signal. To learn more about the process for modulating a signal, see "Using Modem Objects".
$\mathrm{h}=$ modem.qammod $(\mathrm{M})$ constructs a QAM modulator object h for M-ary modulation.
$\mathrm{h}=\operatorname{modem} . q a \bmod (\mathrm{M}$, phaseoffset) constructs a QAM modulator object h whose constellation has a phase offset of phaseoffset radians.
h = modem.qammod(property1, value1, ...) constructs a QAM modulator object h with properties as specified by the property/value pairs. See the following section on properties.
h = modem.qammod(QAMdemod_object) constructs a QAM modulator object h by reading the property values from the QAM demodulator object, QAMdemod_object. The properties that are unique to the QAM modulator object are set to default values.
h = modem.qammod(QAMdemod_object, property1, value1, ...) constructs a QAM modulator object h by reading the property values from the QAM demodulator object, QAMdemod_object. Additional properties are specified using property/value pairs.
$\mathrm{h}=$ modem. qammod constructs a QAM modulator object h with default properties. It constructs a modulator object for $16-Q A M$ modulation and is equivalent to:

```
h = modem.qammod('M', 16, 'PhaseOffset', 0, 'SymbolOrder',...
 'binary', 'InputType', 'integer')
```


## Modem Modulation Method

This object has a method modulate that is used to modulate signals.
The syntax is $y=$ modulate $(h, x)$, where $h$ is the handle to a modulator object and $x$ is a signal. This syntax outputs the baseband signal (complex envelope) y.
$x$ can be a multichannel signal. The columns of $x$ are considered individual channels, while the rows are time steps.

When mapping input bits to symbols, the first bit is interpreted as the most significant bit.

For h.inputtype = `bit' (i.e., x represents binary input), nBits consecutive elements in each channel or column represent a symbol, where $n$ Bits $=\log _{2}(\mathrm{~h} . \mathrm{M})$. The number of elements in each channel must be an integer multiple of $n$ Bits, and elements of $x$ must be 0 or 1 . For an input x of size $R \times C$, an output y of size ( $R / n B i t s$ ) $\times C$ is computed.

For h.inputtype = integer' (i.e., $x$ represents symbol input), elements of $x$ must be in the range [0, h.M-1]. For an input $x$ of size $R \times C$, an output y of size $R \times C$ is computed.

See Using Modem Objects for usage examples.

## Properties

The following table describes the properties of the QAM modulator object.

| Property | Description |
| :--- | :--- |
| Type | Type of modulation object. This property is a fixed <br> value, set to 'QAM Modulator '. |
| M | M-ary value. Default is 16. |
| PhaseOffset | Phase offset of ideal signal constellation in radians. <br> Default is 0. |


| Property | Description |
| :--- | :--- |
| Constellation | Ideal signal constellation. This property is not <br> writable and is automatically computed based on the <br> M and PhaseOffset properties. |
| SymbolOrder | Type of mapping employed for mapping symbols to <br> ideal constellation points. The choices are 'binary' <br> (binary mapping), 'gray ' (Gray mapping), and <br> 'user-defined ' (custom mapping). Default is <br> 'binary '. |
| SymbolMapping | Symbol mapping values corresponding to ideal <br> constellation points. This property is writable only <br> when SymbolOrder is set to 'user-defined '. Each <br> element of the symbol mapping vector contains <br> the symbol mapped to the corresponding element <br> of the constellation vector. The first element of <br> this vector corresponds to the top-leftmost point <br> of the constellation, with subsequent elements <br> running down column-wise, from left to right. The <br> last element corresponds to the bottom-rightmost <br> point. Note that when the alphabet size is 4, this <br> top-down mapping in binary mode effectively creates <br> a gray-mapped constellation. |
| InputType | Type of input to be processed by the QAM modulator <br> object. The choices are 'bit' (bit/binary output), <br> and 'integer' (integer/symbol output). Default is <br> 'integer'. |

## Methods

A QAM modulator object has the following functions for inspection, management, and simulation:

- copy
- disp
- modulate


## modem.qammod

See "Using Modem Objects" for details and examples of their use.

## Examples

See Also
modem, modem.dpskdemod, modem.dpskmod, modem.genqamdemod, modem.genqammod, modem.mskdemod, modem.mskmod, modem.oqpskdemod, modem.oqpskmod, modem.pamdemod, modem. pammod, modem. pskdemod, modem. pskmod, and modem.qamdemod

## Purpose

Syntax

Description

Scaling factor for normalizing modulation output
scale $=$ modnorm(const, 'avpow', avpow) scale $=$ modnorm(const, 'peakpow', peakpow)
scale = modnorm(const, 'avpow', avpow) returns a scale factor for normalizing a PAM or QAM modulator output such that its average power is avpow (watts). const is a vector specifying the reference constellation used to generate the scale factor. The function assumes that the signal to be normalized has a minimum distance of 2 .
scale = modnorm(const, 'peakpow', peakpow) returns a scale factor for normalizing a PAM or QAM modulator output such that its peak power is peakpow (watts).

The code below illustrates how to use modnorm to transmit a quadrature amplitude modulated signal having a peak power of one watt.

```
M = 16; % Alphabet size
const = qammod([0:M-1],M); % Generate the constellation.
x = randint(1,100,M);
scale = modnorm(const,'peakpow',1); % Compute scale factor.
y = scale * qammod(x,M); % Modulate and scale.
ynoisy = awgn(y,10); % Transmit along noisy channel.
ynoisy_unscaled = ynoisy/scale; % Unscale at receiver end.
z = qamdemod(ynoisy_unscaled,M); % Demodulate.
% See how scaling affects constellation.
h = scatterplot(const,1,0,'ro'); % Unscaled constellation
hold on; % Next plot will be in same figure window.
scatterplot(const*scale,1,0,'bx',h); % Scaled constellation
hold off;
```

In the plot below, the plotting symbol o marks points on the original QAM signal constellation, and the plotting symbol $x$ marks points on
the signal constellation as scaled by the output of the modnorm function. The channel in this example carries points from the scaled constellation.


Additional examples using modnorm are in "Examples of Signal Constellation Plots".

See Also pammod, pamdemod, qammod, qamdemod, "Modulation"

## Purpose Minimum shift keying demodulation

```
Syntax z = mskdemod}(y,nsamp
z = mskdemod(y,nsamp,dataenc)
z = mskdemod(y,nsamp,dataenc,ini_phase)
z = mskdemod(y,nsamp,dataenc,ini_phase,ini_state)
[z,phaseout] = mskdemod(...)
[z,phaseout,stateout] = mskdemod(...)
```


## Description

## Warning

This function is obsolete and may be removed in the future. We strongly recommend that you use modem.mskdemod instead.
$z=m s k d e m o d(y, n s a m p)$ demodulates the complex envelope $y$ of a signal using the differentially encoded minimum shift keying (MSK) method. nsamp denotes the number of samples per symbol and must be a positive integer. The initial phase of the demodulator is 0 . If $y$ is a matrix with multiple rows and columns, the function treats the columns as independent channels and processes them independently.
$z=m s k d e m o d(y, n s a m p$, dataenc $)$ specifies the method of encoding data for MSK. dataenc can be either 'diff' for differentially encoded MSK or 'nondiff' for nondifferentially encoded MSK.
z = mskdemod(y,nsamp,dataenc,ini_phase) specifies the initial phase of the demodulator. ini_phase is a row vector whose length is the number of channels in y and whose values are integer multiples of pi/2. To avoid overriding the default value of dataenc, set dataenc to [].
z = mskdemod(y,nsamp,dataenc,ini_phase,ini_state) specifies the initial state of the demodulator. ini_state contains the last half symbol of the previously received signal. ini_state is an nsamp-by-C matrix, where C is the number of channels in y .
[z, phaseout] = mskdemod(...) returns the final phase of y , which is important for demodulating a future signal. The output phaseout has the same dimensions as the ini_phase input, and assumes the values 0 , pi/2, pi, and $3 * \mathrm{pi} / 2$.
[z, phaseout, stateout] $=$ mskdemod(...) returns the final nsamp values of $y$, which is useful for demodulating the first symbol of a future signal. stateout has the same dimensions as the ini_state input.

## Examples

The example below illustrates how to modulate and demodulate within a loop. To provide continuity from one iteration to the next, the syntaxes for mskmod and mskdemod use initial phases and/or state as both input and output arguments.

```
% Define parameters.
numbits = 99; % Number of bits per iteration
numchans = 2; % Number of channels (columns) in signal
nsamp = 16; % Number of samples per symbol
% Initialize.
numerrs = 0; % Number of bit errors seen so far
demod_ini_phase = zeros(1,numchans); % Modulator phase
mod_ini_phase = zeros(1,numchans); % Demodulator phase
ini_state = complex(zeros(nsamp,numchans)); % Demod. state
% Main loop
for iRuns = 1 : 10
 x = randint(numbits,numchans); % Binary signal
 [y,phaseout] = mskmod(x,nsamp,[],mod_ini_phase);
 mod_ini_phase = phaseout; % For next mskmod command
 [z, phaseout, stateout] = ...
 mskdemod(y,nsamp,[],demod_ini_phase,ini_state);
 ini_state = stateout; % For next mskdemod command
 demod_ini_phase = phaseout; % For next mskdemod command
 numerrs = numerrs + biterr(x,z); % Cumulative bit errors
end
disp(['Total number of bit errors = ' num2str(numerrs)])
```

The output is as follows.
Total number of bit errors $=0$

References

See Also mskmod, fskmod, fskdemod, "Modulation"

Purpose Minimum shift keying modulation

```
Syntax \(\quad y=\operatorname{mskmod}(x, n s a m p)\)
y \(=\) mskmod(x, nsamp,dataenc)
y = mskmod(x,nsamp,dataenc,ini_phase)
[y, phaseout] = mskmod(...)
```


## Description

## Examples

## Warning

This function is obsolete and may be removed in the future. We strongly recommend that you use modem.mskmod instead.
$y=\operatorname{mskmod}(x, n s a m p)$ outputs the complex envelope $y$ of the modulation of the message signal $x$ using differentially encoded minimum shift keying (MSK) modulation. The elements of $x$ must be 0 or 1. nsamp denotes the number of samples per symbol in $y$ and must be a positive integer. The initial phase of the MSK modulator is 0 . If $x$ is a matrix with multiple rows and columns, the function treats the columns as independent channels and processes them independently.
$y=\operatorname{mskmod}(x, n s a m p$, dataenc $)$ specifies the method of encoding data for MSK. dataenc can be either 'diff' for differentially encoded MSK or 'nondiff' for nondifferentially encoded MSK.
$y=m s k m o d\left(x, n s a m p, d a t a e n c, i n i \_p h a s e\right)$ specifies the initial phase of the MSK modulator. ini_phase is a row vector whose length is the number of channels in y and whose values are integer multiples of pi/2. To avoid overriding the default value of dataenc, set dataenc to [].
[y, phaseout] $=\operatorname{mskmod}(\ldots)$ returns the final phase of $y$. This is useful for maintaining phase continuity when you are modulating a future bit stream with differentially encoded MSK. phaseout has the same dimensions as the ini_phase input, and assumes the values 0 , pi/2, pi, and 3*pi/2.

The code below creates an eye diagram from an MSK signal.

```
x = randint(99,1); % Random signal
y = mskmod(x,8,[],pi/2);
```

```
y = awgn(y,30,'measured');
eyediagram(y,16);
```



The example on the reference page for mskdemod also uses this function.

## References

See Also
[1] Pasupathy, Subbarayan, "Minimum Shift Keying: A Spectrally Efficient Modulation," IEEE Communications Magazine, July, 1979, pp. 14-22.
mskdemod, fskmod, fskdemod, "Modulation"

## muxdeintrlv

| Purpose | Restore ordering of symbols using specified shift registers |
| :---: | :---: |
| Syntax | deintrlved = muxdeintrlv(data, delay) |
|  | [deintrlved,state] = muxdeintrlv(data, delay) |
|  | [deintrlved,state] = muxdeintrlv(data,delay,init_state) |

## Description

## Examples

The example below illustrates how to use the state input and output when invoking muxdeintrlv repeatedly. Notice that [deintrlved1; deintrlved2] is the same as deintrlved.

```
delay = [0 4 8 12]; % Delays in shift registers
symbols = 100; % Number of symbols to process
% Interleave random data.
intrlved = muxintrlv(randint(symbols,1,2,123),delay);
% Deinterleave some of the data, recording state for later use.
[deintrlved1,state] = muxdeintrlv(intrlved(1:symbols/2),delay);
% Deinterleave the rest of the data, using state as an input argument.
deintrlved2 = muxdeintrlv(intrlved(symbols/2+1:symbols),delay,state);
% Deinterleave all data in one step.
deintrlved = muxdeintrlv(intrlved,delay);
isequal(deintrlved,[deintrlved1; deintrlved2])
```

The output is below.

```
ans =
```

1
Another example using this function is in "Example: Convolutional Interleavers".

References<br>[1] Heegard, Chris, and Stephen B. Wicker, Turbo Coding, Boston, Kluwer Academic Publishers, 1999.

See Also
muxintrlv, "Interleaving"

```
Purpose Permute symbols using shift registers with specified delays
Syntax \(\quad \begin{array}{ll}\text { intrlved }=\text { muxintrlv(data, delay) } \\ & [\text { intrlved, state }]=\text { muxintrlv(data, delay }) \\ & [\text { intrlved, state }]=\text { muxintrlv(data,delay, init_state })\end{array}\)
```

Examples

References

See Also
intrlved = muxintrlv(data, delay) permutes the elements in data by using internal shift registers, each with its own delay value. delay is a vector whose entries indicate how many symbols each shift register can hold. The length of delay is the number of shift registers. Before the function begins to process data, it initializes all shift registers with zeros. If data is a matrix with multiple rows and columns, the function processes the columns independently.
[intrlved,state] = muxintrlv(data,delay) returns a structure that holds the final state of the shift registers. state. value stores any unshifted symbols. state. index is the index of the next register to be shifted.
[intrlved,state] = muxintrlv(data,delay,init_state) initializes the shift registers with the symbols contained in init_state.value and directs the first input symbol to the shift register referenced by init_state.index. The structure init_state is typically the state output from a previous call to this same function, and is unrelated to the corresponding deinterleaver.

The examples in "Example: Convolutional Interleavers" and on the reference page for the convintrlv function use muxintrlv.

The example on the reference page for muxdeintrlv illustrates how to use the state output and init_state input with that function; the process is analogous for this function.
[1] Heegard, Chris, and Stephen B. Wicker, Turbo Coding, Boston, Kluwer Academic Publishers, 1999.
muxdeintrlv, convintrlv, helintrlv, "Interleaving"

Purpose Equivalent noise bandwidth of filter
Syntax bw = noisebw(num, den, numsamp, Fs)
Description bw = noisebw(num, den, numsamp, Fs) returns the two-sided equivalent noise bandwidth, in Hz , of a digital lowpass filter given in descending powers of z by numerator vector num and denominator vector den. The bandwidth is calculated over numsamp samples of the impulse response. Fs is the sampling rate of the signal that the filter would process; this is used as a scaling factor to convert a normalized unitless quantity into a bandwidth in Hz .

## Examples

This example computes the equivalent noise bandwidth of a Butterworth filter over 100 samples of the impulse response.

```
Fs = 16; % Sampling rate
Fnyq = Fs/2; % Nyquist frequency
Fc = 0.5; % Carrier frequency
[num,den] = butter(2,Fc/Fnyq); % Butterworth filter
bw = noisebw(num,den,100,Fs)
```

The output is below.

## bw =

1.1049

## Algorithm

The two-sided equivalent noise bandwidth is

$$
\frac{\mathrm{Fs} \sum_{i=1}^{N}|h(i)|^{2}}{\left|\sum_{i=1}^{N} h(i)\right|^{2}}
$$

where $h$ is the impulse response of the filter described by num and den, and $N$ is numsamp.

## References

[1] Jeruchim, Michel C., Philip Balaban, and K. Sam Shanmugan, Simulation of Communication Systems, New York, Plenum Press, 1992.

## Purpose

Syntax

Description

Construct normalized least mean square (LMS) adaptive algorithm object

```
alg = normlms(stepsize)
alg = normlms(stepsize,bias)
```

The normlms function creates an adaptive algorithm object that you can use with the lineareq function or dfe function to create an equalizer object. You can then use the equalizer object with the equalize function to equalize a signal. To learn more about the process for equalizing a signal, see "Using Adaptive Equalizer Functions and Objects".
alg $=$ normlms(stepsize) constructs an adaptive algorithm object based on the normalized least mean square (LMS) algorithm with a step size of stepsize and a bias parameter of zero.
alg $=$ normlms(stepsize,bias) sets the bias parameter of the normalized LMS algorithm. bias must be between 0 and 1 . The algorithm uses the bias parameter to overcome difficulties when the algorithm's input signal is small.

## Properties

The table below describes the properties of the normalized LMS adaptive algorithm object. To learn how to view or change the values of an adaptive algorithm object, see "Accessing Properties of an Adaptive Algorithm".

| Property | Description |
| :--- | :--- |
| AlgType | Fixed value, 'Normalized LMS ' |
| StepSize | LMS step size parameter, a <br> nonnegative real number |


| Property | Description |
| :--- | :--- |
| LeakageFactor | LMS leakage factor, a real <br> number between 0 and 1. A value <br> of 1 corresponds to a conventional <br> weight update algorithm, while <br> a value of 0 corresponds to a <br> memoryless update algorithm. |
| Bias | Normalized LMS bias parameter, <br> a nonnegative real number |

## Examples

Algorithm

See Also
lms, signlms, varlms, rls, cma, lineareq, dfe, equalize, "Equalizers"

## References

[1] Farhang-Boroujeny, B., Adaptive Filters: Theory and Applications, Chichester, England, John Wiley \& Sons, 1998.

## Purpose Convert octal to decimal numbers

## Syntax <br> d = oct2dec(c)

Description $d=\operatorname{oct} 2 \mathrm{dec}(\mathrm{c})$ converts an octal matrix c to a decimal matrix d , element by element. In both octal and decimal representations, the rightmost digit is the least significant.

## Examples

The command below converts a 2 -by- 2 octal matrix.

```
d = oct2dec([12 144;0 25])
d =
 10 100
 0 21
```

For instance, the octal number 144 is equivalent to the decimal number 100 because $144($ octal $)=1^{*} 8^{2}+4^{*} 8^{1}+4^{*} 8^{0}=64+32+4=100$.
See Also ..... bi2de

Purpose Offset quadrature phase shift keying demodulation

```
Syntax
z = oqpskdemod(y)
z = oqpskdemod(y,ini_phase)
```


## Description

## See Also

## Warning

This function is obsolete and may be removed in the future. We strongly recommend that you use modem. oqpskdemod instead.
z = oqpskdemod(y) demodulates the complex envelope $y$ of an OQPSK modulated signal. The function implicitly downsamples by a factor of 2 because OQPSK does not permit an odd number of samples per symbol. If $y$ is a matrix with multiple rows, the function processes the columns independently.
z = oqpskdemod(y,ini_phase) specifies the phase offset of the modulated signal in radians.
Purpose Offset quadrature phase shift keying modulation
Syntax

y = oqpskmod(x)

y = oqpskmod(x,ini_phase)

## Description

See Also

Warning
This function is obsolete and may be removed in the future. We strongly recommend that you use modem. oqpskmod instead.
$\mathrm{y}=$ oqpskmod(x) outputs the complex envelope y of the modulation of the message signal $x$ using offset quadrature phase shift keying (OQPSK) modulation. The message signal must consist of integers between 0 and 3 . The function implicitly upsamples by a factor of 2 because OQPSK does not permit an odd number of samples per symbol. If $x$ is a matrix with multiple rows, the function processes the columns independently.
$y=$ oqpskmod(x,ini_phase) specifies the phase offset of the modulated signal in radians.
oqpskdemod, pskmod, pskdemod, qammod, qamdemod, modnorm, "Modulation"

## pamdemod

Purpose Pulse amplitude demodulation

```
Syntax
z = pamdemod(y, M)
z = pamdemod(y,M,ini_phase)
z = pamdemod(y,M,ini_phase,symbol_order)
```


## Description

Examples

See Also

## Warning

This function is obsolete and may be removed in the future. We strongly recommend that you use modem. pamdemod instead.
$z=$ pamdemod $(\mathrm{y}, \mathrm{M})$ demodulates the complex envelope y of a pulse amplitude modulated signal. $M$ is the alphabet size. The ideal modulated signal should have a minimum Euclidean distance of 2 .
$z=\operatorname{pamdemod}\left(y, m, i n i \_p h a s e\right)$ specifies the initial phase of the modulated signal in radians.
z = pamdemod(y,M,ini_phase,symbol_order) specifies how the function assigns binary words to corresponding integers. If symbol_order is set to 'bin' (default), the function uses a natural binary-coded ordering. If symbol_order is set to 'gray', it uses a Gray-coded ordering.

The example in "Comparing Theoretical and Empirical Error Rates" uses this function.
pammod, qamdemod, qammod, pskdemod, pskmod, "Modulation"

## Purpose Pulse amplitude modulation

```
Syntax \(\quad y=\operatorname{pammod}(x, M)\)
y = pammod(x,M,ini_phase)
y = pammod(x,M,ini_phase,symbol_order)
```


## Description

Examples

See Also

Warning
This function is obsolete and may be removed in the future. We strongly recommend that you use modem. pammod instead.
$y=\operatorname{pammod}(x, M)$ outputs the complex envelope $y$ of the modulation of the message signal $x$ using pulse amplitude modulation. $M$ is the alphabet size. The message signal must consist of integers between 0 and $\mathrm{M}-1$. The modulated signal has a minimum Euclidean distance of 2. If $x$ is a matrix with multiple rows, the function processes the columns independently.
$y=\operatorname{pammod}\left(x, M, i n i \_p h a s e\right)$ specifies the initial phase of the modulated signal in radians.
y = pammod(x,M,ini_phase,symbol_order) specifies how the function assigns binary words to corresponding integers. If symbol_order is set to 'bin' (default), the function uses a natural binary-coded ordering. If symbol_order is set to 'gray', it uses a Gray constellation ordering.

The example in "Comparing Theoretical and Empirical Error Rates" uses this function.

## plot (channel)

Purpose Plot channel characteristics with channel visualization tool

## Syntax plot (h)

Description plot( h ), where h is a channel object, launches the channel visualization tool. This GUI tool allows you to plot channel characteristics in various ways. See "Using the Channel Visualization Tool" for details.

Examples Examples using this plotting tool are found in "Examples of Using the Channel Visualization Tool".

See Also<br>filter, rayleighchan, ricianchan

Purpose Phase demodulation
Syntax z = pmmod(y,Fc,Fs,phasedev)
z = pmmod(y,Fc,Fs,phasedev,ini_phase)
Description $z=\operatorname{pmmod}(y, F c, F s$, phasedev $)$ demodulates the phase-modulatedsignal $y$ at the carrier frequency Fc (hertz). $z$ and the carrier signal havesampling rate Fs (hertz), where Fs must be at least 2*Fc. The phasedevargument is the phase deviation of the modulated signal, in radians.
z = pmmod(y,Fc,Fs,phasedev,ini_phase) specifies the initial phaseof the modulated signal, in radians.
Examples The example in "Analog Modulation Example" uses pmdemod.
See Also pmmod, fmmod, fmdemod, "Modulation"
Purpose Phase modulation
Syntax $\mathrm{y}=\mathrm{pmmod}(\mathrm{x}, \mathrm{Fc}, \mathrm{Fs}, \mathrm{phasedev})$
y = pmmod(x,Fc,Fs,phasedev,ini_phase)
Description $y=\operatorname{pmmod}(x, F c, F s$, phasedev $)$ modulates the message signal $x$ usingphase modulation. The carrier signal has frequency Fc (hertz) andsampling rate Fs (hertz), where Fs must be at least 2*Fc. The phasedevargument is the phase deviation of the modulated signal in radians.$y=p m m o d(x, F c, F s$, phasedev,ini_phase) specifies the initial phaseof the modulated signal in radians.
Examples The example in "Analog Modulation Example" uses pmmod.
See Also pmdemod, fmmod, fmdemod, "Modulation"

## Purpose

Convert convolutional code polynomials to trellis description

## Syntax

## Description

```
trellis = poly2trellis(ConstraintLength,CodeGenerator)
trellis = poly2trellis(ConstraintLength,CodeGenerator,...
 FeedbackConnection)
```

The poly2trellis function accepts a polynomial description of a convolutional encoder and returns the corresponding trellis structure description. The output of poly2trellis is suitable as an input to the convenc and vitdec functions, and as a mask parameter for the Convolutional Encoder, Viterbi Decoder, and APP Decoder blocks in Communications Blockset ${ }^{\text {TM }}$ software.


#### Abstract

trellis = poly2trellis(ConstraintLength,CodeGenerator) performs the conversion for a rate $\mathrm{k} / \mathrm{n}$ feedforward encoder. ConstraintLength is a 1 -by- k vector that specifies the delay for the encoder's k input bit streams. CodeGenerator is a k-by-n matrix of octal numbers that specifies the n output connections for each of the encoder's k input bit streams.


trellis = poly2trellis(ConstraintLength,CodeGenerator,... FeedbackConnection) is the same as the syntax above, except that it applies to a feedback, not feedforward, encoder. FeedbackConnection is a 1-by-k vector of octal numbers that specifies the feedback connections for the encoder's k input bit streams.

For both syntaxes, the output is a MATLAB structure whose fields are as in the table below.

Fields of the Output Structure trellis for a Rate k/n Code

| Field in trellis <br> Structure | Dimensions | Meaning |
| :--- | :--- | :--- |
| numInputSymbols | Scalar | Number of input <br> symbols to the <br> encoder: $2^{\mathrm{k}}$ |

Fields of the Output Structure trellis for a Rate $\mathbf{k} / \mathbf{n}$ Code (Continued)

| Field in trellis <br> Structure | Dimensions | Meaning |
| :--- | :--- | :--- |
| numOutputSymbols | Scalar | Number of output <br> symbols from the <br> encoder: $2^{\mathrm{n}}$ |
| numStates | Scalar | Number of states in <br> the encoder |
| nextStates | numStates-by- $2^{\mathrm{k}}$ <br> matrix | Next states for all <br> combinations of <br> current state and <br> current input |
| outputs | numStates-by- $2^{\mathrm{k}}$ <br> matrix | Outputs (in octal) <br> for all combinations <br> of current state and <br> current input |

For more about this structure, see the reference page for the istrellis function.

## Examples

An example of a rate $1 / 2$ encoder is in "Polynomial Description of a Convolutional Encoder".

As another example, consider the rate $2 / 3$ feedforward convolutional encoder depicted in the figure below. The reference page for the convenc function includes an example that uses this encoder.


For this encoder, the ConstraintLength vector is [5,4] and the CodeGenerator matrix is [23,35,0; $0,5,13$ ]. The output below reveals part of the corresponding trellis structure description of this encoder.

```
trellis = poly2trellis([5 4],[23 35 0; 0 5 13])
trellis =
```

numInputSymbols: 4
numOutputSymbols: 8
numStates: 128
nextStates: [128x4 double]
outputs: [128x4 double]
The scalar field trellis.numInputSymbols has the value 4 because the combination of two input bit streams can produce four different input

## poly2trellis

symbols. Similarly, trellis.numOutputSymbols is 8 because the three output bit streams can produce eight different output symbols.

The scalar field trellis.numStates is 128 (that is, $2^{7}$ ) because each of the encoder's seven memory registers can have one of two binary values.

To get details about the matrix fields trellis.nextStates and trellis.outputs, inquire specifically about them. As an example, the command below displays the first five rows of the 128 -by- 4 matrix trellis.nextStates.

```
trellis.nextStates(1:5,:)
ans =
\begin{tabular}{rrrr}
0 & 64 & 8 & 72 \\
0 & 64 & 8 & 72 \\
1 & 65 & 9 & 73 \\
1 & 65 & 9 & 73 \\
2 & 66 & 10 & 74
\end{tabular}
```

This first row indicates that if the encoder starts in the zeroth state and receives input bits of $00,01,10$, or 11 , respectively, the next state will be the 0 th, 64 th, 8 th, or 72 nd state, respectively. The 64 th state means that the bottom-left memory register in the diagram contains the value 1 , while the other six memory registers contain zeros.

See Also<br>istrellis, convenc, vitdec, "Convolutional Coding"

## Purpose

Find primitive polynomials for Galois field
Syntax
pr = primpoly(m)
pr = primpoly(m,opt)
pr = primpoly(m...,'nodisplay')

## Description

$\mathrm{pr}=\mathrm{primpoly}(\mathrm{m})$ returns the primitive polynomial for $\mathrm{GF}\left(2^{\wedge} \mathrm{m}\right)$, where $m$ is an integer between 2 and 16. The Command Window displays the polynomial using " D " as an indeterminate quantity. The output argument pr is an integer whose binary representation indicates the coefficients of the polynomial.
$\mathrm{pr}=$ primpoly (m,opt) returns one or more primitive polynomials for $\mathrm{GF}\left(2^{\wedge} \mathrm{m}\right)$. The output pol depends on the argument opt as shown in the table below. Each element of the output argument pr is an integer whose binary representation indicates the coefficients of the corresponding polynomial. If no primitive polynomial satisfies the constraints, pr is empty.

| opt | Meaning of pr |
| :--- | :--- |
| 'min' | One primitive polynomial for <br> GF $\left(2^{\wedge} m\right)$ having the smallest <br> possible number of nonzero terms |
| 'max' | One primitive polynomial for <br> GF $\left(2^{\wedge} m\right)$ having the greatest <br> possible number of nonzero terms |
| 'all' | All primitive polynomials for <br> GF $\left(2^{\wedge} m\right)$ |
| Positive integer k | All primitive polynomials for <br> GF $\left(2^{\wedge} m\right)$ that have k nonzero <br> terms |

## primpoly

pr = primpoly(m...,'nodisplay') prevents the function from displaying the result as polynomials in " $D$ " in the Command Window. The output argument pr is unaffected by the 'nodisplay' option.

## Examples

The first example below illustrates the formats that primpoly uses in the Command Window and in the output argument pr. The subsequent examples illustrate the display options and the use of the opt argument.

```
pr = primpoly(4)
pr1 = primpoly(5,'max','nodisplay')
pr2 = primpoly(5,'min')
pr3 = primpoly(5,2)
pr4 = primpoly(5,3);
```

The output is below.

```
Primitive polynomial(s) =
D^4+D^1+1
pr =
 1 9
pr1 =
 6 1
Primitive polynomial(s) =
```

```
D^5+D^2+1
pr2 =
3 7
No primitive polynomial satisfies the given constraints.
pr3 =
 []
 Primitive polynomial(s) =
 D^5+D^2+1
 D^5+D^3+1
```

See Also
isprimitive, "Galois Field Computations"

Purpose Phase shift keying demodulation

```
Syntax \(\quad z=\operatorname{pskdemod}(y, M)\)
z = pskdemod(y,M,ini_phase)
z = pskdemod(y,M,ini_phase,symbol_order)
```


## Description

## Examples

The example below compares PSK and PAM (phase amplitude modulation) to show that PSK is more sensitive to phase noise. This is the expected result because the PSK constellation is circular, and the PAM constellation is linear.

```
len = 10000; % Number of symbols
M = 16; % Size of alphabet
msg = randint(len,1,M); % Original signal
% Modulate using both PSK and PAM,
% to compare the two methods.
txpsk = pskmod(msg,M);
```

```
txpam = pammod(msg,M);
% Perturb the phase of the modulated signals.
phasenoise = randn(len,1)*.015;
rxpsk = txpsk.*exp(j*2*pi*phasenoise);
rxpam = txpam.*exp(j*2*pi*phasenoise);
% Create a scatter plot of the received signals.
scatterplot(rxpsk); title('Noisy PSK Scatter Plot')
scatterplot(rxpam); title('Noisy PAM Scatter Plot')
% Demodulate the received signals.
recovpsk = pskdemod(rxpsk,M);
recovpam = pamdemod(rxpam,M);
% Compute number of symbol errors in each case.
numerrs_psk = symerr(msg,recovpsk)
numerrs_pam = symerr(msg,recovpam)
```

The output and scatter plots are below. Your results might vary because this example uses random numbers.

```
numerrs_psk =
 374
numerrs_pam =
```

    1
    


See Also
pskmod, qamdemod, qammod, dpskmod, dpskdemod, modnorm, "Modulation"

## Purpose Phase shift keying modulation

```
Syntax \(\quad y=\operatorname{pskmod}(x, M)\)
y = pskmod(x,M,ini_phase)
y = pskmod(x,M,ini_phase,symbol_order)
```


## Description

Examples

See Also dpskmod, dpskdemod, pskdemod, pammod, pamdemod, qammod, qamdemod, modnorm, "Modulation"

## qamdemod

Purpose Quadrature amplitude demodulation

```
Syntax \(\quad z=\operatorname{qamdemod}(y, M)\)
z = qamdemod(y,M,ini_phase)
z = qamdemod(y,M,ini_phase,symbol_order)
```


## Description

## Examples

## Warning

This function is obsolete and may be removed in the future. We strongly recommend that you use modem. qamdemod instead.
z = qamdemod( $\mathrm{y}, \mathrm{M}$ ) demodulates the complex envelope y of a quadrature amplitude modulated signal. $M$ is the alphabet size and must be an integer power of 2 . The constellation is the same as in qammod. If $y$ is a matrix with multiple rows, the function processes the columns independently.
$z=$ qamdemod( $y, M$, ini_phase) specifies the initial phase of the modulated signal in radians.
z = qamdemod(y,M,ini_phase,symbol_order) specifies how the function assigns binary words to corresponding integers. If symbol_order is set to 'bin' (default), the function uses a natural binary-coded ordering. If symbol_order is set to 'gray', it uses a Gray-coded ordering.

The code below suggests which regions in the complex plane are associated with different digits that can form the output of the demodulator. The code demodulates random points, looks for points that were demapped to the digits 0 and 3 , and plots those points in red and blue, respectively. Notice that the regions reflect a rotation of the signal constellation by pi/8.

```
% Construct [in-phase, quadrature] for random points.
y = 4* (rand(1000,1)-1/2) +j*4* (rand (1000,1)-1/2);
% Demodulate using an initial phase of pi/8.
z = qamdemod(y,4,pi/8);
% Find indices of points that mapped to the digits 0 and 3.
```

```
 red = find(z==0);
 blue = find(z==3);
 % Plot points corresponding to 0 and 3.
 h = scatterplot(y(red,:),1,0,'r.'); hold on
 scatterplot(y(blue,:),1,0,'b.',h);
 legend('Points corresponding to O','Points corresponding to 3');
 hold off
```



Another example using this function is in "Computing the Symbol Error Rate".

Purpose Quadrature amplitude modulation

```
Syntax
\(y=\operatorname{qammod}(x, M)\)
y = qammod(x,M,ini_phase)
y = qammod(x,M,ini_phase,symbol_order)
```


## Description

## Examples Examples using this function are in "Computing the Symbol Error Rate" and "Examples of Signal Constellation Plots".

[^4]
## Purpose

Q function

## Syntax

$\mathrm{y}=\mathrm{qfunc}(\mathrm{x})$

Description
$y=q \operatorname{lunc}(x)$ is one minus the cumulative distribution function of the standardized normal random variable, evaluated at each element of the real array x. For a scalar x, the formula is

$$
Q(x)=\frac{1}{\sqrt{2 \pi}} \int_{x}^{\infty} \exp \left(-t^{2} / 2\right) d t
$$

The $Q$ function is related to the complementary error function, erfc, according to

$$
Q(x)=\frac{1}{2} \operatorname{erfc}\left(\frac{x}{\sqrt{2}}\right)
$$

The example below computes the Q function on a matrix, element by element.

```
x = [0 1 2; 3 4 5];
format short e % Switch to floating point format for displays.
y = qfunc(x)
format % Return to default format for displays.
```

The output is below.

```
y =
 5.0000e-001 1.5866e-001 2.2750e-002
 1.3499e-003 3.1671e-005 2.8665e-007
```

See Also
qfuncinv, erf, erfc, erfcx, erfinv, erfcinv

Purpose Inverse Q function

## Syntax <br> $y=q f u n c i n v(x)$

Description
$y=q f u n c i n v(x)$ returns the argument of the $Q$ function at which the $Q$ function's value is $x$. The input $x$ must be a real array with elements between 0 and 1, inclusive.
For a scalar $x$, the $Q$ function is one minus the cumulative distribution function of the standardized normal random variable, evaluated at $x$. The Q function is defined as

$$
Q(x)=\frac{1}{\sqrt{2 \pi}} \int_{x}^{\infty} \exp \left(-t^{2} / 2\right) d t
$$

The Q function is related to the complementary error function, erfc, according to

$$
Q(x)=\frac{1}{2} \operatorname{erfc}\left(\frac{x}{\sqrt{2}}\right)
$$

## Examples

The example below illustrates the inverse relationship between qfunc and qfuncinv.

```
x1 = [0 1 2; 3 4 5];
y1 = qfuncinv(qfunc(x1)) % Invert qfunc to recover x1.
x2 = 0:.2:1;
y2 = qfunc(qfuncinv(x2)) % Invert qfuncinv to recover x2.
```

The output is below.

```
y1 =
 0 1 2
 3 4 5
 y2 =
```

    \(\begin{array}{llllll}0 & 0.2000 & 0.4000 & 0.6000 & 0.8000 & 1.0000\end{array}\)
    See Also
qfunc, erf, erfc, erfcx, erfinv, erfcinv

Purpose
Produce quantization index and quantized output value

## Syntax

## Description

## Examples

```
index = quantiz(sig,partition)
[index,quants] = quantiz(sig,partition,codebook)
[index,quants,distor] = quantiz(sig,partition,codebook)
```

index = quantiz(sig, partition) returns the quantization levels in the real vector signal sig using the parameter partition. partition is a real vector whose entries are in strictly ascending order. If partition has length $n$, index is a vector whose kth entry is

- 0 if sig(k) $\leq$ partition(1)
- m if partition $(m)<\operatorname{sig}(k) \leq \operatorname{partition}(m+1)$
- n if partition(n) < sig(k)
[index, quants] = quantiz(sig, partition, codebook) is the same as the syntax above, except that codebook prescribes a value for each partition in the quantization and quants contains the quantization of sig based on the quantization levels and prescribed values. codebook is a vector whose length exceeds the length of partition by one. quants is a row vector whose length is the same as the length of sig. quants is related to codebook and index by

```
quants(ii) = codebook(index(ii)+1);
```

where ii is an integer between 1 and length(sig).
[index, quants, distor] = quantiz(sig, partition, codebook) is the same as the syntax above, except that distor estimates the mean square distortion of this quantization data set.

The command below rounds several numbers between 1 and 100 up to the nearest multiple of 10 . quants contains the rounded numbers, and index tells which quantization level each number is in.

$$
\text { [index,quants] = quantiz([3 } 348440 \text { 23],10:10:90,10:10:100) }
$$

The output is below.

```
index =
```



```
quants =
 10 40 90 40 30
```

See Also
lloyds, dpcmenco, dpcmdeco, "Quantizing a Signal"

## randdeintrlv

## Purpose Restore ordering of symbols using random permutation

```
Syntax deintrlvd = randdeintrlv(data,state)
```

deintrlvd $=$ randdeintrlv(data, state) restores the original ordering of the elements in data by inverting a random permutation. The state parameter initializes the random number generator that the function uses to determine the permutation. state is either a scalar or a $35 \times 1$ vector, and is described in the rand function, which is used in randintrlv. The function is predictable for a given state, but different states produce different permutations. If data is a matrix with multiple rows and columns, the function processes the columns independently.

To use this function as an inverse of the randintrlv function, use the same state input in both functions. In that case, the two functions are inverses in the sense that applying randintrlv followed by randdeintrlv leaves data unchanged.

This function uses, by default, the Mersenne Twister algorithm by Nishimura and Matsumoto.

Note Using the state parameter causes this function to switch random generators to use the 'state' algorithm of the rand function.

See rand for details on the generator algorithm.

[^5]
## Purpose <br> Generate bit error patterns

## Syntax

```
out = randerr(m)
out = randerr(m,n)
out = randerr(m,n,errors)
out = randerr(m,n,prob,state)
```

For all syntaxes, randerr treats each row of out independently. out $=$ randerr ( $m$ ) generates an m-by-m binary matrix, each row of which has exactly one nonzero entry in a random position. Each allowable configuration has an equal probability.
out $=$ rander $(m, n)$ generates an $m$-by-n binary matrix, each row of which has exactly one nonzero entry in a random position. Each allowable configuration has an equal probability.
out $=$ randerr(m,n,errors) generates an m-by-n binary matrix, where errors determines how many nonzero entries are in each row:

- If errors is a scalar, it is the number of nonzero entries in each row.
- If errors is a row vector, it lists the possible number of nonzero entries in each row.
- If errors is a matrix having two rows, the first row lists the possible number of nonzero entries in each row and the second row lists the probabilities that correspond to the possible error counts.

Once randerr determines the number of nonzero entries in a given row, each configuration of that number of nonzero entries has equal probability.
out $=$ randerr(m,n,prob,state) is the same as the syntax above, except that it first resets the state of the uniform random number generator rand to the integer state.

This function uses, by default, the Mersenne Twister algorithm by Nishimura and Matsumoto.

Note Using the state parameter causes this function to switch random generators to use the 'state' algorithm of the rand function.

See rand for details on the generator algorithm.

The examples below generate an 8 -by- 7 binary matrix, each row of which is equally likely to have either zero or two nonzero entries, and then alter the scenario by making it three times as likely that a row has two nonzero entries. Notice in the latter example that the second row of the error parameter sums to one.

```
out = randerr(8,7,[0 2])
out2 = randerr(8,7,[0 2; .25 .75])
```

Sample output is below.
out =

| 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 0 | 0 | 0 | 1 |
| 1 | 0 | 1 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 1 | 1 | 0 |
| 1 | 0 | 1 | 0 | 0 | 0 | 0 |

out2 =

| 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 0 | 0 | 0 | 0 | 0 | 1 |
| 1 | 0 | 0 | 0 | 0 | 0 | 1 |
| 0 | 0 | 0 | 1 | 0 | 1 | 0 |


| 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 1 | 0 | 0 | 0 | 0 | 1 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1 | 0 | 0 | 0 | 1 | 0 | 0 |

## See Also

rand, randsrc, randint, "Signal Sources"

## randint

## Purpose <br> Generate matrix of uniformly distributed random integers

Syntax<br>\section*{Description}

```
out = randint
out = randint(m)
out = randint(m,n)
out = randint(m,n,rg)
out = randint(m,n,rg,state)
```

out $=$ randint generates a random scalar that is either 0 or 1 , with equal probability.
out $=$ randint ( $m$ ) generates an m-by-m binary matrix, each of whose entries independently takes the value 0 with probability $1 / 2$.
out $=$ randint $(m, n)$ generates an $m$-by- $n$ binary matrix, each of whose entries independently takes the value 0 with probability $1 / 2$.
out $=$ randint ( $m, n, r g$ ) generates an m-by-n integer matrix. If rg is zero, out is a zero matrix. Otherwise, the entries are uniformly distributed and independently chosen from the range

- [0, rg-1] if rg is a positive integer
- $[r g+1,0]$ if $r g$ is a negative integer
- Between min and max, inclusive, if $r g=[m i n, \max ]$ or [max, min]
out $=$ randint ( $m, n, r g$, state $)$ is the same as the syntax above, except that it first resets the state of the uniform random number generator rand to the integer state.

This function uses, by default, the Mersenne Twister algorithm by Nishimura and Matsumoto.

Note Using the state parameter causes this function to switch random generators to use the 'state' algorithm of the rand function.

See rand for details on the generator algorithm.

Examples To generate a 10-by-10 matrix whose elements are uniformly distributed in the range from 0 to 7 , use either of the following commands.

```
out = randint(10,10,[0,7]);
out = randint(10,10,8);
```


## See Also

rand, randsrc, randerr, "Signal Sources"

## randintrlv

Purpose Reorder symbols using random permutation

```
Syntax intrlvd = randintrlv(data,state)
```

Description intrlvd = randintrlv(data, state) rearranges the elements in data using a random permutation. The state parameter initializes the random number generator that the function uses to determine the permutation. state is either a scalar or a $35 \times 1$ vector, and is described in the rand function, which is used in randintrlv. The function is predictable and invertible for a given state, but different states produce different permutations. If data is a matrix with multiple rows and columns, the function processes the columns independently.

This function uses, by default, the Mersenne Twister algorithm by Nishimura and Matsumoto.

Note Using the state parameter causes this function to switch random generators to use the 'state' algorithm of therand function.

See rand for details on the generator algorithm.

## Examples For an example using random interleaving and deinterleaving, see "Example: Block Interleavers". <br> See Also rand, randdeintrlv, "Interleaving"

| Purpose | Generate random matrix using prescribed alphabet |
| :---: | :---: |
| Syntax | ```out = randsrc out = randsrc(m) out = randsrc(m,n) out = randsrc(m,n,alphabet) out = randsrc(m,n,[alphabet; prob]) out = randsrc(m,n,...,state);``` |
| Description | out = randsrc generates a random scalar that is either -1 or 1 , with equal probability. |
|  | out = randsrc(m) generates an m-by-m matrix, each of whose entries independently takes the value -1 with probability $1 / 2$, and 1 with probability $1 / 2$. |
|  | out $=$ randsrc $(m, n)$ generates an $m$-by- $n$ matrix, each of whose entries independently takes the value -1 with probability $1 / 2$, and 1 with probability $1 / 2$. |
|  | out $=$ randsrc( $m, n$, alphabet) generates an m-by-n matrix, each of whose entries is independently chosen from the entries in the row vector alphabet. Each entry in alphabet occurs in out with equal probability. Duplicate values in alphabet are ignored. |
|  | out $=$ randsrc(m,n,[alphabet; prob]) generates an m-by-n matrix, each of whose entries is independently chosen from the entries in the row vector alphabet. Duplicate values in alphabet are ignored. The row vector prob lists corresponding probabilities, so that the symbol alphabet ( $k$ ) occurs with probability $\operatorname{prob}(k)$, where $k$ is any integer between one and the number of columns of alphabet. The elements of prob must add up to 1 . |
|  | out $=$ randsrc $(m, n, \ldots$, state $)$; is the same as the two preceding syntaxes, except that it first resets the state of the uniform random number generator rand to the integer state. |
|  | This function uses, by default, the Mersenne Twister algorithm by Nishimura and Matsumoto. |

Note Using the state parameter causes this function to switch random generators to use the 'state' algorithm of the rand function.

See rand for details on the generator algorithm.

## Examples

To generate a 10 -by- 10 matrix whose elements are uniformly distributed among members of the set $\{-3,-1,1,3\}$, you can use either of these commands.

```
out = randsrc(10,10,[-3 -1 1 3]);
out = randsrc(10,10,[-3 -1 1 3; . 25 . 25 .25 . 25]);
```

To skew the probability distribution so that -1 and 1 each occur with probability .3, while -3 and 3 each occur with probability .2, use this command.

```
out = randsrc(10,10,[-3 -1 1 3; .2 .3 .3 .2]);
```

See Also
rand, randint, randerr, "Signal Sources"

## Purpose <br> Syntax <br> Description

Construct Rayleigh fading channel object
chan = rayleighchan(ts,fd)
chan = rayleighchan(ts,fd,tau,pdb)
chan = rayleighchan
chan = rayleighchan(ts,fd) constructs a frequency-flat ("single path") Rayleigh fading channel object. ts is the sample time of the input signal, in seconds. fd is the maximum Doppler shift, in hertz. You can model the effect of the channel on a signal $x$ by using the syntax $y=$ filter (chan, $x$ ).
chan = rayleighchan(ts,fd,tau,pdb) constructs a frequency-selective ("multiple path") fading channel object that models each discrete path as an independent Rayleigh fading process. tau is a vector of path delays, each specified in seconds. pdb is a vector of average path gains, each specified in dB .
With the above two syntaxes, a smaller fd (a few hertz to a fraction of a hertz) leads to slower variations, and a larger fd (a couple hundred hertz) to faster variations.
chan = rayleighchan constructs a frequency-flat Rayleigh channel object with no Doppler shift. This is a static channel. The sample time of the input signal is irrelevant for frequency-flat static channels.

## Properties

The tables below describe the properties of the channel object, chan, that you can set and that MATLAB technical computing software sets automatically. To learn how to view or change the values of a channel object, see "Viewing Object Properties" or "Changing Object Properties".

## Writeable Properties

| Property | Description |
| :--- | :--- |
| InputSamplePeriod | Sample period of the signal on <br> which the channel acts, measured <br> in seconds. |
| DopplerSpectrum | Doppler spectrum object(s). The <br> default is a Jakes Doppler object. |
| MaxDopplerShift | Maximum Doppler shift of the <br> channel, in hertz (applies to all <br> paths of a channel). |
| PathDelays | Vector listing the delays of the <br> discrete paths, in seconds. |
| AvgPathGaindB | Vector listing the average gain of <br> the discrete paths, in decibels. |
| NormalizePathGains | If 1, the Rayleigh fading process <br> is normalized such that the <br> expected value of the path gains' <br> total power is 1. |
| StoreHistory | If this value is 1, channel <br> state information needed by <br> the channel visualization tool <br> is stored as the channel filter <br> function processes the signal. The <br> default value is 0. |

## Writeable Properties (Continued)

| Property | Description |
| :--- | :--- |
| StorePathGains | If set to 1, the complex path gain <br> vector is stored as the channel <br> filter function processes the <br> signal. The default value is 0. |
| ResetBeforeFiltering | If 1, each call to filter resets the <br> state of chan before filtering. If <br> 0, the fading process maintains <br> continuity from one call to the <br> next. |

## Read-Only Properties

| Property | Description | When MATLAB <br> Sets or Updates <br> Value |
| :--- | :--- | :--- |
| ChannelType | Fixed value, <br> 'Rayleigh' | When you create <br> object |
| PathGains | Complex vector listing <br> the current gains of the <br> discrete paths. When <br> you create or reset chan, <br> PathGains is a random <br> vector influenced by <br> AvgPathGaindB and <br> NormalizePathGains. | When you create <br> object, reset object, <br> or use it to filter a <br> signal |

Read-Only Properties (Continued)

| Property | Description | When MATLAB <br> Sets or Updates <br> Value |
| :--- | :--- | :--- |
| ChannelFilterDelay | Delay of the channel <br> filter, measured in <br> samples | When you <br> create object or <br> change ratio of <br> InputSamplePeriod <br> to PathDelays |
| NumSamplesProcessed | Number of samples the <br> channel processed since <br> the last reset. When you <br> create or reset chan, this <br> property value is 0. | When you create <br> object, reset object, <br> or use it to filter a <br> signal |

## Relationships Among Properties

The PathDelays and AvgPathGaindB properties of the channel object must always have the same vector length, because this length equals the number of discrete paths of the channel. The DopplerSpectrum property must either be a single Doppler object or a vector of Doppler objects with the same length as PathDelays.
If you change the length of PathDelays, MATLAB truncates or zero-pads the value of AvgPathGaindB if necessary to adjust its vector length (MATLAB may also change the values of read-only properties such as PathGains and ChannelFilterDelay). If DopplerSpectrum is a vector of Doppler objects, and you increase or decrease the length of PathDelays, MATLAB will add Jakes Doppler objects or remove elements from DopplerSpectrum, respectively, to make it the same length as PathDelays.
If StoreHistory is set to 1 (the default is 0 ), the object stores channel state information as the channel filter function processes the signal. You can then visualize this state information through a GUI using the plot (channel) method.

Note Setting StoreHistory to 1 will result in a slower simulation. If you do not want to visualize channel state information using plot (channel), but want to access the complex path gains, then set StorePathGains to 1 , while keeping StoreHistory as 0 .

## Visualization of Channel

The characteristics of a channel can be plotted using the channel visualization tool. See "Using the Channel Visualization Tool" for details.

## Examples Several examples using this function are in "Fading Channels".

The example below illustrates that when you change the value of PathDelays, MATLAB automatically changes the values of other properties to make their vector lengths consistent with that of the new value of PathDelays.

```
c1 = rayleighchan(1e-5,130) % Create object.
c1.PathDelays = [0 1e-6] % Change the number of delays.
% MATLAB automatically changes the size of c1.AvgPathGaindB,
% c1.PathGains, and c1.ChannelFilterDelay.
```

The output below displays all the properties of the channel object before and after the change in the value of the PathDelays property. In the second listing of properties, the AvgPathGaindB, PathGains, and ChannelFilterDelay properties all have different values compared to the first listing of properties.

$$
c 1=
$$

```
 ChannelType: 'Rayleigh'
InputSamplePeriod: 1.0000e-005
 DopplerSpectrum: [1x1 doppler.jakes]
 MaxDopplerShift: 130
 PathDelays: 0
 AvgPathGaindB: 0
```

```
 NormalizePathGains: 1
 StoreHistory: 0
 PathGains: 0.2104- 0.6197i
 ChannelFilterDelay: 0
 ResetBeforeFiltering: 1
 NumSamplesProcessed: 0
c1 =
ChannelType: 'Rayleigh'
 InputSamplePeriod: 1.0000e-005
 DopplerSpectrum: [1\times1 doppler.jakes]
 MaxDopplerShift: 130
 PathDelays: [0 1.0000e-006]
 AvgPathGaindB: [0 0]
 NormalizePathGains: 1
 StoreHistory: 0
 PathGains: [-0.3088+ 0.1842i 0.3008- 0.0338i]
 ChannelFilterDelay: 4
ResetBeforeFiltering: 1
 NumSamplesProcessed: 0
```

Algorithm The methodology used to simulate fading channels is described in "Simulation of Multipath Fading Channels: Methodology". The properties of the channel object are related to the quantities of the latter section as follows:

- The InputSamplePeriod property contains the value of $T_{s}$.
- The PathDelays vector property contains the values of $\left\{\tau_{k}\right\}$, where $1 \leq k \leq K$.
- The PathGains read-only property contains the values of $\left\{a_{k}\right\}$, where $1 \leq k \leq K$.
- The AvgPathGaindB vector property contains the values of $10 \log _{10}\left\{E\left[\left|a_{k}\right|^{2}\right]\right\}$, where $1 \leq k \leq K$, and $E[\cdot]$ denotes statistical
expectation.
- The ChannelFilterDelay read-only property contains the value of $N_{1}$.


## See Also

References
ricianchan, filter, plot (channel), reset, "Fading Channels"
[1] Jeruchim, Michel C., Philip Balaban, and K. Sam Shanmugan, Simulation of Communication Systems, Second Edition, New York, Kluwer Academic/Plenum, 2000.

Purpose
Design raised cosine finite impulse response (FIR) filter
Syntax

```
b = rcosfir(R,n_T,rate,T)
b = rcosfir(R,n_T,rate,T,filter_type)
rcosfir(...)
rcosfir(...,colr)
[b,sample_time] = rcosfir(...)
```


## Optional

Inputs

| Input | Default Value |
| :--- | :--- |
| $\mathrm{n}_{\mathbf{\prime}} \mathrm{T}$ | 3 |
| rate | 5 |
| T | 1 |

## Description

The rcosfir function designs the same filters that the rcosine function designs when the latter's type_flag argument includes 'fir'. However, rcosine is somewhat easier to use.

The time response of the raised cosine filter has the form

$$
h(t)=\frac{\sin (\pi t / T)}{(\pi t / T)} \cdot \frac{\cos (\pi R t / T)}{\left(1-4 R^{2} t^{2} / T^{2}\right)}
$$

$b=r \operatorname{cosfir}\left(R, n_{-} T, r a t e, T\right)$ designs a raised cosine filter and returns a vector $b$ of length $\left(n_{-} T(2)-n_{-} T(1)\right) *$ rate +1 . The filter's rolloff factor is $R$, a real number between 0 and 1 , inclusive. $T$ is the duration of each bit in seconds. $n_{-} T$ is a scalar or a vector of length 2 . If $n \_T$ is specified as a scalar, the filter length is $2 * n_{-} T+1$ input samples. If $n_{-} T$ is a vector, it specifies the extent of the filter. In this case, the filter length is $n_{-} T(2)-n_{-} T(1)+1$ input samples (or ( $\left.n_{-} T(2)-n_{-} T(1)\right)$ *rate +1 output samples).
rate is the number of points in each input symbol period of length $T$. rate must be greater than 1 . The input sample rate is $T$ samples per second, while the output sample rate is $T *$ rate samples per second.
The order of the FIR filter is

$$
\left(n_{-} T(2)-n_{-} T(1)\right) * \text { rate }
$$

The arguments $\mathrm{n}_{-} \mathrm{T}$, rate, and T are optional inputs whose default values are 3,5 , and 1 , respectively.
b = rcosfir(R, n_T,rate, T,filter_type) designs a square-root raised cosine filter if filter_type is 'sqrt'. If filter_type is 'normal', this syntax is the same as the previous one.

The impulse response of a square root raised cosine filter is

$$
h(t)=4 R \frac{\cos ((1+R) \pi t / T)+\frac{\sin ((1-R) \pi t / T)}{4 R \frac{t}{T}}}{\pi \sqrt{T}\left(1-(4 R t / T)^{2}\right)}
$$

rcosfir(...) produces plots of the time and frequency responses of the raised cosine filter.
rcosfir (..., colr) uses the string colr to determine the plotting color. The choices for colr are the same as those listed for the plot function.
[b,sample_time] = rcosfir(...) returns the FIR filter and its sample time.

## Examples

The commands below compare different rolloff factors.

```
rcosfir(0);
subplot(211); hold on;
subplot(212); hold on;
rcosfir(.5,[],[],[],[],'r-');
rcosfir(1,[],[],[],[],'g-');
```

$\begin{array}{ll}\text { See Also } & \text { rcosiir, rcosflt, rcosine, firrcos, rcosdemo, "Special Filters" } \\ \text { References } & \begin{array}{l}\text { [1] Korn, Israel, Digital Communications, New York, Van Nostrand } \\ \\ \\ \text { Reinhold, 1985. }\end{array}\end{array}$

Purpose
Filter input signal using raised cosine filter
Syntax

```
y = rcosflt(x,Fd,Fs)
y = rcosflt(x,Fd,Fs,'type_flag',r,delay,tol)
y = rcosflt(x,Fd,Fs,'filter_type/Fs',r,delay,tol)
y = rcosflt(x,Fd,Fs,'filter_type/filter',num,den)
y = rcosflt(x,Fd,Fs,'filter_type/filter',num,den,delay)
y = rcosflt(x,Fd,Fs,'filter_type/filter/Fs',num,den...)
[y,t] = rcosflt(...)
```


## Optional <br> Inputs

| Input | Default Value |
| :--- | :--- |
| filter_type | fir/normal |
| $r$ | 0.5 |
| delay | 3 |
| tol | 0.01 |
| den | 1 |

The function rcosflt passes an input signal through a raised cosine filter. You can either let rcosflt design a raised cosine filter automatically or you can specify the raised cosine filter yourself using input arguments.

## Designing the Filter Automatically

$y=r \operatorname{cosflt}(x, F d, F s)$ designs a raised cosine FIR filter and then filters the input signal $x$ using it. The sample frequency for the digital input signal x is Fd , and the sample frequency for the output signal y is Fs. The ratio Fs/Fd must be an integer. In the course of filtering, rcosflt upsamples the data by a factor of Fs/Fd, by inserting zeros between samples. The order of the filter is $1+2 *$ delay*Fs/Fd, where delay is 3 by default. If $x$ is a vector, then the sizes of $x$ and $y$ are related by this equation.

```
length \((y)=(\) length \((x)+2 *\) delay)*Fs/Fd
```

Otherwise, y is a matrix, each of whose columns is the result of filtering the corresponding column of $x$.
y = rcosflt(x,Fd,Fs,'type_flag',r,delay,tol) designs a raised cosine FIR or IIR filter and then filters the input signal $x$ using it. The ratio $\mathrm{Fs} / \mathrm{Fd}$ must be an integer. $r$ is the rolloff factor for the filter, a real number in the range $[0,1]$. delay is the filter's group delay, measured in input samples. The actual group delay in the filter design is delay/Fd seconds. The input tol is the tolerance in the IIR filter design. FIR filter design does not use tol.

The characteristics of $x, F d, F s$, and $y$ are as in the first syntax.
The fourth input argument, 'type_flag', determines the type of filter that rcosflt should design and can have up to three components: filter type, sample frequency, and filter.

Values of filter_type to Determine the Type of Filter

| Type of Filter | Value of filter_type |
| :--- | :--- |
| FIR raised cosine filter | fir or fir/normal |
| IIR raised cosine filter | iir or iir/normal |
| Square-root FIR raised cosine <br> filter | fir/sqrt |
| Square-root IIR raised cosine <br> filter | iir/sqrt |

$y=r c o s f l t\left(x, F d, F s, ' f i l t e r \_t y p e / F s ', r, d e l a y, t o l\right)$ is the same as the previous syntax, except that it assumes that $x$ has sample frequency Fs. This syntax does not upsample $x$ any further. If $x$ is a vector, then the relative sizes of $x$ and $y$ are related by this equation.

```
length(y) = length(x) + (2 * delay * Fs/Fd)
```

As before, if x is a nonvector matrix, y is a matrix, each of whose columns is the result of filtering the corresponding column of x .

## Specifying the Filter Using Input Arguments

$y=r \operatorname{cosflt}(x, F d, F s$, 'filter_type/filter', num, den) filters the input signal $x$ using a filter whose transfer function numerator and denominator are given in num and den, respectively. If type_filter includes fir, then omit den. This syntax uses the same arguments $x$, Fd, Fs, and type_filter as explained in the first and second syntaxes above.
y = rcosflt(x,Fd,Fs,'filter_type/filter',num,den, delay) uses delay in the same way that the rcosine function uses it. This syntax assumes that the filter described by num, den, and delay was designed using rcosine.

As before, if x is a nonvector matrix, y is a matrix each of whose columns is the result of filtering the corresponding column of $x$.
$y=r c o s f l t\left(x, F d, F s, ' f i l t e r \_t y p e / f i l t e r / F s ', n u m, d e n . ..\right)$ is the same as the earlier syntaxes, except that it assumes that $x$ has sample frequency Fs instead of Fd. This syntax does not upsample $x$ any further. If $x$ is a vector, the relative sizes of $x$ and $y$ are related by this equation.

```
length(y) = length(x) + (2 * delay * Fs/Fd)
```


## Additional Output

[y,t] = rcosflt(...) outputs $t$, a vector that contains the sampling time points of $y$.

See Also
References
rcosine, rcosfir, rcosiir, rcosdemo, "Special Filters"
[1] Korn, Israel, Digital Communications, New York, Van Nostrand Reinhold, 1985.

Purpose Design raised cosine infinite impulse response (IIR) filter

```
Syntax
```

```
[num,den] = rcosiir(R,T_delay,rate,T,tol)
```

[num,den] = rcosiir(R,T_delay,rate,T,tol)
[num,den] = rcosiir(R,T_delay,rate,T,tol,type_filter)
[num,den] = rcosiir(R,T_delay,rate,T,tol,type_filter)
rcosiir(...)
rcosiir(...)
rcosiir(...,colr)
rcosiir(...,colr)
[num,den,sample_time] = rcosiir(...)

```
[num,den,sample_time] = rcosiir(...)
```


## Optional <br> Inputs

| Input | Default Value |
| :--- | :--- |
| T_delay | 3 |
| rate | 5 |
| T | 1 |
| tol | 0.01 |

## Description

The rcosiir function designs the same filters that the rcosine function designs when the latter's type_flag argument includes 'iir'. However, rcosine is somewhat easier to use.

The time response of the raised cosine filter has the form

$$
h(t)=\frac{\sin (\pi t / T)}{(\pi t / T)} \cdot \frac{\cos (\pi R t / T)}{\left(1-4 R^{2} t^{2} / T^{2}\right)}
$$

[num,den] = rcosiir(R,T_delay, rate,T,tol) designs an IIR approximation of an FIR raised cosine filter, and returns the numerator and denominator of the IIR filter. The filter's rolloff factor is R, a real number between 0 and 1 , inclusive. $T$ is the symbol period in seconds. The filter's group delay is T_delay symbol periods. rate is the number of sample points in each interval of duration $T$. rate must be greater than 1 . The input sample rate is T samples per second, while the output sample rate is $T^{*}$ rate samples per second. If tol is an integer greater than 1 , it becomes the order of the IIR filter; if tol is less than 1 , it
indicates the relative tolerance for rcosiir to use when selecting the order based on the singular values.

The arguments T_delay, rate, T , and tol are optional inputs whose default values are $3,5,1$, and 0.01 , respectively.
[num,den] = rcosiir(R,T_delay,rate,T,tol,type_filter) designs a square-root raised cosine filter if type_filter is 'sqrt'. If type_filter is 'normal', this syntax is the same as the previous one. rcosiir(...) plots the time and frequency responses of the raised cosine filter.
rcosiir(..., colr) uses the string colr to determine the plotting color. The choices for colr are the same as those listed for the plot function.
[num,den, sample_time] = rcosiir(...) returns the transfer function and the sample time of the IIR filter.

## Examples <br> The script below compares different values of T_delay.

```
rcosiir(0,10);
subplot(211); hold on;
subplot(212); hold on;
col = ['r-';'g-';'b-';'m-';'c-';'w-'];
R = [8,6,4,3,2,1];
for ii = R
 rcosiir(0,ii,[],[],[],[],col(find(R==ii),:));
end;
```

This example shows how the filter's frequency response more closely approximates that of the ideal raised cosine filter as T_delay increases.

See Also rcosfir, rcosflt, rcosine, rcosdemo, "Special Filters"

## References

[1] Kailath, Thomas, Linear Systems, Englewood Cliffs, N.J., Prentice-Hall, 1980.

## rcosiir

[2] Korn, Israel, Digital Communications, New York, Van Nostrand Reinhold, 1985.

## Purpose Design raised cosine filter

## Syntax

```
num = rcosine(Fd,Fs)
[num,den] = rcosine(Fd,Fs,type_flag)
[num,den] = rcosine(Fd,Fs,type_flag,r)
[num,den] = rcosine(Fd,Fs,type_flag,r,delay)
[num,den] = rcosine(Fd,Fs,type_flag,r,delay,tol)
```

Description
num $=$ rcosine(Fd,Fs) designs a finite impulse response (FIR) raised cosine filter and returns its transfer function. The digital input signal has sampling frequency Fd. The sampling frequency for the filter is Fs. The ratio Fs/Fd must be a positive integer greater than 1. The default rolloff factor is .5 . The filter's group delay, which is the time between the input to the filter and the filter's peak response, is three input samples. Equivalently, the group delay is 3/Fd seconds.
[num, den] = rcosine(Fd,Fs,type_flag) designs a raised cosine filter using directions in the string variable type_flag. Filter types are listed in the table below, along with the corresponding values of type_flag.

## Types of Filter and Corresponding Values of type_flag

| Type of Filter | Value of type_flag |
| :--- | :--- |
| Finite impulse response (FIR) | 'default ' or 'fir/normal' |
| Infinite impulse response (IIR) | 'iir' or ''iir/normal'' |
| Square-root raised cosine FIR | 'sqrt' or 'fir/sqrt' |
| Square-root raised cosine IIR | 'iir/sqrt' |

The default tolerance value in IIR filter design is 0.01 .
[num,den] = rcosine(Fd,Fs,type_flag,r) specifies the rolloff factor, $r$. The rolloff factor is a real number in the range $[0,1]$.
[num,den] = rcosine(Fd,Fs,type_flag,r,delay) specifies the filter's group delay, measured in input samples. delay is a positive integer. The actual group delay in the filter design is delay/Fd seconds.
[num,den] = rcosine(Fd,Fs,type_flag,r,delay,tol) specifies the tolerance in the IIR filter design. FIR filter design does not use tol.

See Also<br>rcosflt, rcosiir, rcosfir, rcosdemo, "Special Filters"<br>\section*{References}<br>[1] Korn, Israel, Digital Communications, New York, Van Nostrand Reinhold, 1985.

## Purpose

Syntax
Description

Rectangular pulse shaping
y = rectpulse(x,nsamp)
$y=$ rectpulse ( $x, n s a m p$ ) applies rectangular pulse shaping to $x$ to produce an output signal having nsamp samples per symbol. Rectangular pulse shaping means that each symbol from $x$ is repeated nsamp times to form the output $y$. If $x$ is a matrix with multiple rows, the function treats each column as a channel and processes the columns independently.

Note To insert zeros between successive samples of $x$ instead of repeating the samples of $x$, use the upsample function instead.

## Examples

An example in "Combining Pulse Shaping and Filtering with Modulation" uses this function in conjunction with modulation.

The code below processes two independent channels, each containing three symbols of data. In the pulse-shaped matrix $y$, each symbol contains four samples.

```
nsamp = 4; % Number of samples per symbol
nsymb = 3; % Number of symbols
ch1 = randint(nsymb,1,2,68521); % Random binary channel
ch2 = [1:nsymb]';
x = [ch1 ch2] % Two-channel signal
y = rectpulse(x,nsamp)
```

The output is below. In y, each column corresponds to one channel and each row corresponds to one sample. Also, the first four rows of y correspond to the first symbol, the next four rows of $y$ correspond to the second symbol, and the last four rows of $y$ correspond to the last symbol.

## rectpulse

$$
\begin{array}{ccc}
x= & & \\
& \\
& 1 & 1 \\
1 & 2 \\
0 & 3 \\
& & \\
y= & \\
& & \\
& & \\
1 & 1 \\
1 & 1 \\
1 & 1 \\
1 & 1 \\
1 & 2 \\
1 & 2 \\
1 & 2 \\
1 & 2 \\
0 & 3 \\
0 & 3 \\
0 & 3 \\
0 & 3
\end{array}
$$

| Purpose | Reset channel object |
| :---: | :---: |
| Syntax | ```reset(chan) reset(chan,randstate)``` |
| Description | reset (chan) resets the channel object chan, initializing the PathGains and NumSamplesProcessed properties as well as internal filter states. This syntax is useful when you want the effect of creating a new channel. <br> reset(chan, randstate) resets the channel object chan and initializes the state of the random number generator that the channel uses. randstate is a two-element column vector. This syntax is useful when you want to repeat previous numerical results that started from a particular state. |
| Examples | The example below shows how to get repeatable results. The example chooses a state for the random number generator immediately after defining the channel object and later resets the random number generator to that state. ```% Set up channel. % Assume you want to maintain continuity % from one filtering operation to the next, except % when you explicitly reset the channel. c = rayleighchan(1e-4,100); reset(c,[11; 13]); % Choose arbitrary state. c.ResetBeforeFiltering = 0; % Filter some data. sig = randint(100,1); y1 = [filter(c,sig(1:50)) filter(c,sig(51:end))]; % Try to repeat the results. reset(c,[11; 13]); % Use same state as before. y2 = [filter(c,sig(1:50)) filter(c,sig(51:end))];``` |

```
isequal(y1,y2) % y1 and y2 should be the same.
```

The output is below.

```
ans =
```

1

See Also
rayleighchan, ricianchan, filter, "Fading Channels"

## Purpose Reset equalizer object

## Syntax reset(eqobj)

Description reset (eqobj) resets the equalizer object eqobj, initializing the Weights, WeightInputs, and NumSamplesProcessed properties and the adaptive algorithm states. If eqobj is a CMA equalizer, reset does not change the Weights property.

See Also dfe, equalize, lineareq, "Equalizers"

Construct Rician fading channel object

```
chan = ricianchan(ts,fd,k)
chan = ricianchan(ts,fd,k,tau,pdb)
chan = ricianchan(ts,fd,k,tau,pdb,fdLOS)
chan = ricianchan
```

chan $=$ ricianchan( $t s, f d, k$ ) constructs a frequency-flat (single path) Rician fading-channel object. ts is the sample time of the input signal, in seconds. fd is the maximum Doppler shift, in hertz. $k$ is the Rician K -factor in linear scale. You can model the effect of the channel chan on a signal $x$ by using the syntax $y=$ filter (chan, $x$ ). See filter (channel) for more information.
chan $=$ ricianchan(ts,fd, $\mathrm{k}, \mathrm{tau}, \mathrm{pdb}$ ) constructs a
frequency-selective (multiple paths) fading-channel object. If $k$ is a scalar, then the first discrete path is a Rician fading process (it contains a line-of-sight component) with a K-factor of $k$, while the remaining discrete paths are independent Rayleigh fading processes (no line-of-sight component). If $k$ is a vector of the same size as tau, then each discrete path is a Rician fading process with a K-factor given by the corresponding element of the vector $k$. tau is a vector of path delays, each specified in seconds. pdb is a vector of average path gains, each specified in dB .
chan $=$ ricianchan(ts,fd,k,tau, pdb,fdLOS) specifies fdlos as the Doppler shift(s) of the line-of-sight component(s) of the discrete path(s), in hertz. fdlos must be the same size as $k$. If $k$ and fdlos are scalars, the line-of-sight component of the first discrete path has a Doppler shift of fdlos, while the remaining discrete paths are independent Rayleigh fading processes. If fdlos is a vector of the same size as $k$, the line-of-sight component of each discrete path has a Doppler shift given by the corresponding element of the vector fdlos. By default, fdlos is 0 . The initial phase(s) of the line-of-sight component(s) can be set through the property DirectPathInitPhase.
chan $=$ ricianchan sets the maximum Doppler shift to 0 , the Rician K-factor to 1, and the Doppler shift and initial phase of the line-of-sight
component to 0 . This syntax models a static frequency-flat channel, and, in this trivial case, the sample time of the signal is unimportant.

## Properties

The following tables describe the properties of the channel object, chan, that you can set and that MATLAB technical computing software sets automatically. To learn how to view or change the values of a channel object, see "Viewing Object Properties" or "Changing Object Properties".

## Writeable Properties

| Property | Description |
| :--- | :--- |
| InputSamplePeriod | Sample period of the signal on <br> which the channel acts, measured <br> in seconds. |
| DopplerSpectrum | Doppler spectrum object(s). The <br> default is a Jakes doppler object. |
| MaxDopplerShift | Maximum Doppler shift of the <br> channel, in hertz (applies to all <br> paths of a channel). |
| KFactor | Rician K-factor (scalar or <br> vector). The default value is 1 <br> (line-of-sight component on the <br> first path only). |
| PathDelays | Vector listing the delays of the <br> discrete paths, in seconds. |
| AvgPathGaindB | Vector listing the average gain of <br> the discrete paths, in decibels. |
| DirectPathDopplerShift | Doppler shift(s) of the line-of-sight <br> component(s) in hertz. The <br> default value is 0. |

## Writeable Properties (Continued)

| Property | Description |
| :--- | :--- |
| DirectPathInitPhase | Initial phase(s) of line-of-sight <br> component(s) in radians. The <br> default value is 0. |
| NormalizePathGains | If this value is 1, the Rayleigh <br> fading process is normalized such <br> that the expected value of the <br> path gains' total power is 1. |
| StoreHistory | If this value is 1, channel <br> state information needed by <br> the channel visualization tool <br> is stored as the channel filter <br> function processes the signal. The <br> default value is 0. |
| StorePathGains | If this value is 1, the complex <br> path gain vector is stored as the <br> channel filter function processes <br> the signal. The default value is 0. |
| ResetBeforeFiltering | If this value is 1, each call <br> to filter resets the state of <br> chan before filtering. If it is 0, <br> the fading process maintains <br> continuity from one call to the <br> next. |

## Read-Only Properties

| Property | Description | When MATLAB <br> Ses or Updates <br> Value |
| :--- | :--- | :--- |
| ChannelType | Fixed value, 'Rician '. | When you create <br> object. |
| PathGains | Complex vector listing <br> the current gains of the <br> discrete paths. When <br> you create or reset chan, <br> PathGains is a random <br> vector influenced by <br> AvgPathGaindB and <br> NormalizePathGains. | When you create <br> object, reset object, <br> or use it to filter a <br> signal. |
| ChannelFilterDelay | Delay of the channel <br> filter, measured in <br> samples. | When you <br> create object or <br> change ratio of <br> InputSamplePeriod <br> to PathDelays. |
| NumSamplesProcessed | Number of samples the <br> channel processed since <br> the last reset. When you <br> create or reset chan, this <br> property value is 0. | When you create <br> object, reset object, <br> or use it to filter a <br> signal. |
|  |  |  |

## Relationships Among Properties

Changing the length of PathDelays also changes the length of AvgPathGaindB, the length of KFactor if KFactor is a vector (no change if it is a scalar), and the length of DopplerSpectrum if DopplerSpectrum is a vector (no change if it is a single object).

DirectPathDopplerShift and DirectPathInitPhase both follow changes in KFactor.

The PathDelays and AvgPathGaindB properties of the channel object must always have the same vector length, because this length equals the number of discrete paths of the channel. The DopplerSpectrum property must either be a single Doppler object or a vector of Doppler objects with the same length as PathDelays.
If you change the length of PathDelays, MATLAB truncates or zero-pads the value of AvgPathGaindB if necessary to adjust its vector length (MATLAB may also change the values of read-only properties such as PathGains and ChannelFilterDelay). If DopplerSpectrum is a vector of Doppler objects, and you increase or decrease the length of PathDelays, MATLAB will add Jakes Doppler objects or remove elements from DopplerSpectrum, respectively, to make it the same length as PathDelays.
If StoreHistory is set to 1 (the default is 0 ), the object stores channel state information as the channel filter function processes the signal. You can then visualize this state information through a GUI using the plot (channel) method.

Note Setting StoreHistory to 1 will result in a slower simulation. If you do not want to visualize channel state information using plot (channel), but want to access the complex path gains, then set StorePathGains to 1 , while keeping StoreHistory as 0 .

## Reset Method

If MaxDopplerShift is set to 0 (the default), the channel object, chan, models a static channel.
Use the syntax reset (chan) to generate a new channel realization.

## Algorithm

The methodology used to simulate fading channels is described in "Simulation of Multipath Fading Channels: Methodology", where the properties specific to the Rician channel object are related to the quantities of this section as follows (see the rayleighchan reference
page for properties common to both Rayleigh and Rician channel objects):

- The Kfactor property contains the value of $K_{r}$ (if it's a scalar) or $\left\{K_{r, k}\right\}, 1 \leq k \leq K$ (if it's a vector).
- The DirectPathDopplerShift property contains the value of $f_{d, L O S}$ (if it's a scalar) or $\left\{f_{d, L O S, k}\right\}, 1 \leq k \leq K$ (if it's a vector).
- The DirectPathInitPhase property contains the value of $\theta_{\text {LOS }}$ (if it's a scalar) or $\left\{\theta_{L O S, k}\right\}, 1 \leq k \leq K$ (if it's a vector).

Channel
Visualization

Examples
See Also
References

The characteristics of a channel can be plotted using the channel visualization tool. See "Using the Channel Visualization Tool" for details.

The example in "Quasi-Static Channel Modeling" uses this function.
rayleighchan, filter, plot (channel), reset, "Fading Channels"
[1] Jeruchim, M., Balaban, P., and Shanmugan, K., Simulation of Communication Systems, Second Edition, New York, Kluwer Academic/Plenum, 2000.

```
Purpose Construct recursive least squares (RLS) adaptive algorithm object
Syntax
alg = rls(forgetfactor)
alg = rls(forgetfactor,invcorr0)
```

The rls function creates an adaptive algorithm object that you can use with the lineareq function or dfe function to create an equalizer object. You can then use the equalizer object with the equalize function to equalize a signal. To learn more about the process for equalizing a signal, see "Using Adaptive Equalizer Functions and Objects".
alg = rls(forgetfactor) constructs an adaptive algorithm object based on the recursive least squares (RLS) algorithm. The forgetting factor is forgetfactor, a real number between 0 and 1 . The inverse correlation matrix is initialized to a scalar value.
alg = rls(forgetfactor, invcorr0) sets the initialization parameter for the inverse correlation matrix. This scalar value is used to initialize or reset the diagonal elements of the inverse correlation matrix.

## Properties

The table below describes the properties of the RLS adaptive algorithm object. To learn how to view or change the values of an adaptive algorithm object, see "Accessing Properties of an Adaptive Algorithm".

| Property | Description |
| :--- | :--- |
| AlgType | Fixed value, 'RLS' |
| ForgetFactor | Forgetting factor |
| InvCorrInit | Scalar value used to initialize or <br> reset the diagonal elements of the <br> inverse correlation matrix |

Also, when you use this adaptive algorithm object to create an equalizer object (via the lineareq function or dfe function), the equalizer object has an InvCorrMatrix property that represents the inverse correlation
matrix for the RLS algorithm. The initial value of InvCorrMatrix is InvCorrInit*eye( N ), where N is the total number of equalizer weights.

## Examples

## Algorithm

## See Also

## References

For examples that use this function, see "Defining an Equalizer Object" and "Example: Adaptive Equalization Within a Loop".

Referring to the schematics presented in "Overview of Adaptive Equalizer Classes", define w as the vector of all weights $w_{i}$ and define $u$ as the vector of all inputs $u_{i}$. Based on the current set of inputs, $u$, and the current inverse correlation matrix, P , this adaptive algorithm first computes the Kalman gain vector, K

$$
K=\frac{P u}{(\text { ForgetFactor })+u^{H} P u}
$$

where H denotes the Hermitian transpose.
Then the new inverse correlation matrix is given by

$$
(\text { ForgetFactor })^{-1}\left(\mathrm{P}-\mathrm{Ku}^{H} \mathrm{P}\right)
$$

and the new set of weights is given by

$$
\mathrm{w}+\mathrm{K}^{*} \mathrm{e}
$$

where the * operator denotes the complex conjugate.
lms, signlms, normlms, varlms, lineareq, dfe, equalize, "Equalizers"
[1] Farhang-Boroujeny, B., Adaptive Filters: Theory and Applications, Chichester, England, John Wiley \& Sons, 1998.
[2] Haykin, S., Adaptive Filter Theory, Third Ed., Upper Saddle River, NJ, Prentice-Hall, 1996.
[3] Kurzweil, J., An Introduction to Digital Communications, New York, John Wiley \& Sons, 2000.
[4] Proakis, John G., Digital Communications, Fourth Ed., New York, McGraw-Hill, 2001.

Purpose Reed-Solomon decoder

Note rsdec will be removed in a future release. Use fec.rsdec instead.

```
Syntax decoded \(=r \operatorname{sdec}(\operatorname{code}, \mathrm{n}, \mathrm{k})\)
decoded \(=\) rsdec(code, \(n, k\), genpoly)
decoded = rsdec(...,paritypos)
[decoded, cnumerr] = rsdec(...)
[decoded,cnumerr,ccode] = rsdec(...)
```


## Description

decoded $=$ rsdec (code, $n, k$ ) attempts to decode the received signal in code using an [n,k] Reed-Solomon decoding process with the narrow-sense generator polynomial. code is a Galois array of symbols having $m$ bits each. Each $n$-element row of code represents a corrupted systematic codeword, where the parity symbols are at the end and the leftmost symbol is the most significant symbol. n is at most $2^{\mathrm{m}}-1$. If n is not exactly $2^{\mathrm{m}}-1$, rsdec assumes that code is a corrupted version of a shortened code.

In the Galois array decoded, each row represents the attempt at decoding the corresponding row in code. A decoding failure occurs if rsdec detects more than ( $n-k$ )/2 errors in a row of code. In this case, rsdec forms the corresponding row of decoded by merely removing $n-k$ symbols from the end of the row of code.
decoded $=$ rsdec (code, $n, k$, genpoly) is the same as the syntax above, except that a nonempty value of genpoly specifies the generator polynomial for the code. In this case, genpoly is a Galois row vector that lists the coefficients, in order of descending powers, of the generator polynomial. The generator polynomial must have degree n-k. To use the default narrow-sense generator polynomial, set genpoly to [].
decoded $=$ rsdec(..., paritypos) specifies whether the parity symbols in code were appended or prepended to the message in the coding operation. The string paritypos can be either 'end' or
'beginning'. The default is 'end'. If paritypos is 'beginning', a decoding failure causes rsdec to remove $n-k$ symbols from the beginning rather than the end of the row.
[decoded, cnumerr] = rsdec (...) returns a column vector cnumerr, each element of which is the number of corrected errors in the corresponding row of code. A value of -1 in cnumerr indicates a decoding failure in that row in code.
[decoded, cnumerr,ccode] = rsdec(...) returns ccode, the corrected version of code. The Galois array ccode has the same format as code. If a decoding failure occurs in a certain row of code, the corresponding row in ccode contains that row unchanged.

## Examples

The example below encodes three message words using a $(7,3)$ Reed-Solomon encoder. It then corrupts the code by introducing one error in the first codeword, two errors in the second codeword, and three errors in the third codeword. Then rsdec tries to decode the corrupted code.

```
m = 3; % Number of bits per symbol
n = 2^m-1; k = 3; % Word lengths for code
msg = gf([2 7 3; 4 0 6; 5 1 1],m); % Three rows of m-bit symbols
code = rsenc(msg,n,k);
errors = gf([2 0 0 0 0 0 0; 3 4 0 0 0 0 0; 5 6 7 0 0 0 0],m);
noisycode = code + errors;
[dec,cnumerr] = rsdec(noisycode,n,k)
```

The output is below.

```
dec = GF(2^3) array. Primitive polynomial = D^3+D+1 (11 decimal)
Array elements =
\begin{tabular}{lll}
2 & 7 & 3 \\
4 & 0 & 6 \\
0 & 7 & 6
\end{tabular}
```

```
cnumerr =
 1
 2
 -1
```

The output shows that rsdec successfully corrects the errors in the first two codewords and recovers the first two original message words. However, a (7,3) Reed-Solomon code can correct at most two errors in each word, so rsdec cannot recover the third message word. The elements of the vector cnumerr indicate the number of corrected errors in the first two words and also indicate the decoding failure in the third word.

For additional examples, see "Creating and Decoding Reed-Solomon Codes".

## Limitations $\quad \mathrm{n}$ and k must differ by an even integer. n must be between 3 and 65535 .

Algorithm rsdec uses the Berlekamp-Massey decoding algorithm. For information about this algorithm, see the works listed in "References" on page 2-539 below.

See Also<br>rsenc, gf, rsgenpoly, "Block Coding"

## References

[1] Wicker, S. B., Error Control Systems for Digital Communication and Storage, Upper Saddle River, NJ, Prentice Hall, 1995.
[2] Berlekamp, E. R., Algebraic Coding Theory, New York, McGraw-Hill, 1968.

| Purpose | Decode ASCII file encoded using Reed-Solomon code |
| :--- | :--- |
| Syntax | rsdecof(file_in, file_out); rsdecof(file_in, file_out, err_cor); |
| Description | This function is the inverse process of the function rsencof in that it <br> decodes a file that rsencof encoded. <br> rsdecof(file_in, file_out) decodes the ASCII file file_in that was <br> previously created by the function rsencof using an error-correction <br> capability of 5. The decoded message is written to file_out. Both <br> file_in and file_out are string variables. |

Note If the number of characters in file_in is not an integer multiple of 127 , the function appends char (4) symbols to the data it must decode. If you encode and then decode a file using rsencof and rsdecof, respectively, the decoded file might have char (4) symbols at the end that the original file does not have.
rsdecof(file_in,file_out,err_cor) is the same as the first syntax, except that err_cor specifies the error-correction capability for each block of 127 codeword characters. The message length is 127 -2 *err_cor. The value in err_cor must match the value used in rsencof when file_in was created.

## Examples

An example is on the reference page for rsencof.

See Also rsencof, "Block Coding"

## Purpose <br> Reed-Solomon encoder

Note rsenc will be removed in a future version. Use fec.rsenc instead.

```
Syntax \(\quad\) code \(=r \operatorname{senc}(m s g, n, k)\)
code \(=\) rsenc(msg, \(\mathrm{n}, \mathrm{k}\), genpoly)
code \(=\) rsenc(...,paritypos)
```


## Description

## Examples

The example below encodes two message words using a $(7,3)$ Reed-Solomon encoder.

```
m = 3; % Number of bits per symbol
n = 2^m-1; k = 3; % Word lengths for code
msg = gf([2 7 3; 4 0 6],m); % Two rows of m-bit symbols
code = rsenc(msg,n,k)
```

The output is below.

```
code = GF(2^3) array. Primitive polynomial = D^3+D+1 (11 decimal)
Array elements =
```

| 2 | 7 | 3 | 3 | 6 | 7 | 6 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 4 | 0 | 6 | 4 | 2 | 2 | 0 |

For additional examples, see "Representing Words for Reed-Solomon Codes" and "Creating and Decoding Reed-Solomon Codes".

## Limitations <br> n and k must differ by an even integer. n must be between 3 and 65535 .

See Also rsdec, gf, rsgenpoly, "Block Coding"

## Purpose

Encode ASCII file using Reed-Solomon code

## Syntax

Description
rsencof(file_in,file_out) encodes the ASCII file file_in using

```
rsencof(file_in,file_out); rsencof(file_in,file_out,err_cor);
``` \((127,117)\) Reed-Solomon code. The error-correction capability of this code is 5 for each block of 127 codeword characters. This function writes the encoded text to the file file_out. Both file_in and file_out are string variables.
rsencof(file_in,file_out,err_cor) is the same as the first syntax, except that err_cor specifies the error-correction capability for each block of 127 codeword characters. The message length is 127-2*err_cor.

Note If the number of characters in file_in is not an integer multiple of 127-2 * err_cor, the function appends char (4) symbols to file_out.

\section*{Examples}

The file matlabroot/toolbox/comm/comm/oct2dec.m contains text help for the oct2dec function in this toolbox. The commands below encode the file using rsencof and then decode it using rsdecof.
```

file_in = [matlabroot '/toolbox/comm/comm/oct2dec.m'];
file_out = 'encodedfile'; % Or use another filename
rsencof(file_in,file_out) % Encode the file.
file_in = file_out;
file_out = 'decodedfile'; % Or use another filename
rsdecof(file_in,file_out) % Decode the file.

```

To see the original file and the decoded file in the MATLAB workspace, use the commands below (or similar ones if you modified the filenames above).
```

type oct2dec.m

```

\section*{type decodedfile}

\section*{See Also rsdecof, "Block Coding"}

\section*{Purpose}

Generator polynomial of Reed-Solomon code

\section*{Syntax}
```

genpoly $=r$ sgenpoly (n, k)
genpoly $=$ rsgenpoly (n,k,prim_poly)
genpoly $=$ rsgenpoly(n,k,prim_poly,b)
[genpoly,t] $=$ rsgenpoly(...)

```

Description

Examples
genpoly \(=r\) sgenpoly ( \(n, k\) ) returns the narrow-sense generator polynomial of a Reed-Solomon code with codeword length \(n\) and message length k . The codeword length n must have the form \(2^{\mathrm{m}}-1\) for some integer \(m\), and \(n-k\) must be an even integer. The output genpoly is a Galois row vector that represents the coefficients of the generator polynomial is \(\left(X-A^{1}\right)\left(X-A^{2}\right) \ldots\left(X-A^{2 t}\right)\) where \(A\) is a root of error-correction capability, ( \(n-k\) )/2.
genpoly \(=\) rsgenpoly ( \(n, k\), prim_poly) is the same as the syntax above, except that prim_poly specifies the primitive polynomial for \(\mathrm{GF}(\mathrm{n}+1)\) that has A as a root. prim_poly is an integer whose binary use the default primitive polynomial GF( \(\mathrm{n}+1\) ), set prim_poly to [].
genpoly \(=\) rsgenpoly (n,k,prim_poly, b) returns the generator polynomial \(\left(X-A^{b}\right)\left(X-A^{b+1}\right) \ldots\left(X-A^{b+2 t-1}\right)\), where \(b\) is an integer, \(A\) is a root of prim_poly, and \(t\) is the code's error-correction capability, ( \(\mathrm{n}-\mathrm{k}\) )/2.
[genpoly,t] = rsgenpoly(...) returns t, the error-correction capability of the code. generator polynomial in order of descending powers. The narrow-sense the default primitive polynomial for the field \(\operatorname{GF}(\mathrm{n}+1)\) and t is the code's representation indicates the coefficients of the primitive polynomial. To

The examples below create Galois row vectors that represent generator polynomials for a [7,3] Reed-Solomon code. The vectors g and g2 both represent the narrow-sense generator polynomial, but with respect to different primitive elements A. More specifically, g2 is defined such that A is a root of the primitive polynomial \(\mathrm{D}^{3}+\mathrm{D}^{2}+1\) for \(\mathrm{GF}(8)\), not of the default primitive polynomial \(\mathrm{D}^{3}+\mathrm{D}+1\). The vector g3 represents
the generator polynomial \(\left(X-A^{3}\right)\left(X-A^{4}\right)\left(X-A^{5}\right)\left(X-A^{6}\right)\), where \(A\) is a root of \(\mathrm{D}^{3}+\mathrm{D}^{2}+1\) in GF (8).
```

g = rsgenpoly(7,3)
g2 = rsgenpoly(7,3,13) % Use nondefault primitive polynomial.
g3 = rsgenpoly(7,3,13,3) % Use b = 3.

```

The output is below.
```

g = GF(2^3) array. Primitive polynomial = D^3+D+1 (11 decimal)
Array elements =
1 3 1 1 2
g2 = GF(2^3) array. Primitive polynomial = D^3+D^2+1 (13 decimal)
Array elements =
1 4
g3 = GF(2^3) array. Primitive polynomial = D^3+D^2+1 (13 decimal)
Array elements =
1

```

As another example, the command below shows that the default narrow-sense generator polynomial for a [15,11] Reed-Solomon code is \(X^{4}+\left(A^{3}+A^{2}+1\right) X^{3}+\left(A^{3}+A^{2}\right) X^{2}+A^{3} X+\left(A^{2}+A+1\right)\), where \(A\) is a root of the default primitive polynomial for \(\mathrm{GF}(16)\).
```

gp = rsgenpoly(15,11)

```
\(g p=G F(2 \wedge 4)\) array. Primitive polynomial = \(D^{\wedge} 4+D+1\) (19 decimal)
Array elements =
    \(\begin{array}{lllll}1 & 13 & 12 & 8 & 7\end{array}\)
For additional examples, see "Parameters for Reed-Solomon Codes".
Limitations \(\quad n\) and \(k\) must differ by an even integer. The maximum allowable value of \(n\) is 65535 .
See Also gf, rsenc, rsdec, "Block Coding"

\section*{Purpose Generate scatter plot}
```

Syntax scatterplot(x)
scatterplot(x,n)
scatterplot(x,n,offset)
scatterplot(x,n,offset,plotstring)
scatterplot(x,n,offset,plotstring,h)
h = scatterplot(...)

```

\section*{Description}
scatterplot(x) produces a scatter plot for the signal \(x\). The interpretation of \(x\) depends on its shape and complexity:
- If \(x\) is a real two-column matrix, scatterplot interprets the first column as in-phase components and the second column as quadrature components.
- If x is a complex vector, scatterplot interprets the real part as in-phase components and the imaginary part as quadrature components.
- If x is a real vector, scatterplot interprets it as a real signal.
scatterplot \((x, n)\) is the same as the first syntax, except that the function plots every nth value of the signal, starting from the first value. That is, the function decimates x by a factor of n before plotting.
scatterplot ( \(\mathrm{x}, \mathrm{n}\), offset) is the same as the first syntax, except that the function plots every nth value of the signal, starting from the (offset+1)st value in \(x\).
scatterplot( \(x, n\), offset, plotstring) is the same as the syntax above, except that plotstring determines the plotting symbol, line type, and color for the plot. plotstring is a string whose format and meaning are the same as in the plot function.
scatterplot ( \(\mathrm{x}, \mathrm{n}\), offset, plotstring, h ) is the same as the syntax above, except that the scatter plot is in the figure whose handle is h , rather than a new figure. h must be a handle to a figure that
scatterplot previously generated. To plot multiple signals in the same figure, use hold on.
\(\mathrm{h}=\) scatterplot(...) is the same as the earlier syntaxes, except that \(h\) is the handle to the figure that contains the scatter plot.

\section*{Examples See "Example: Scatter Plots" or the example on the reference page for qamdemod. Both examples illustrate how to plot multiple signals in a single scatter plot. \\ For an online demonstration, type showdemo scattereyedemo.}
See Also eyediagram, plot, scattereyedemo, scatter, "Scatter Plots"

Purpose
Syntax

Calculate bit error rate (BER) using semianalytic technique
```

ber = semianalytic(txsig,rxsig,modtype,M,Nsamp)
ber = semianalytic(txsig,rxsig,modtype,M,Nsamp,num,den)
ber = semianalytic(txsig,rxsig,modtype,M,Nsamp,EbNo)
ber =
semianalytic(txsig,rxsig,modtype,M,Nsamp, num, den, EbNo)
[ber,avgampl,avgpower] = semianalytic(...)

```

\section*{Graphical Interface}

Description

As an alternative to the semianalytic function, invoke the BERTool GUI (bertool) and use the Semianalytic tab.
ber = semianalytic(txsig,rxsig,modtype, \(M\), Nsamp) returns the bit error rate (BER) of a system that transmits the complex baseband vector signal txsig and receives the noiseless complex baseband vector signal rxsig. Each of these signals has Nsamp samples per symbol. Nsamp is also the sampling rate of txsig and rxsig, in Hz. The function assumes that rxsig is the input to the receiver filter, and the function filters rxsig with an ideal integrator. modtype is the modulation type of the signal and \(M\) is the alphabet size. The table below lists the valid values for modtype and \(M\).
\begin{tabular}{l|l|l}
\hline \begin{tabular}{l} 
Modulation \\
Scheme
\end{tabular} & Value of modtype & Valid Values of \(\boldsymbol{M}\) \\
\hline \begin{tabular}{l} 
Differential phase \\
shift keying (DPSK)
\end{tabular} & 'dpsk' & 2,4 \\
\hline \begin{tabular}{l} 
Minimum shift \\
keying (MSK) with \\
differential encoding
\end{tabular} & 'msk/diff' & 2 \\
\hline \begin{tabular}{l} 
Minimum shift \\
keying (MSK) with \\
nondifferential \\
encoding
\end{tabular} & 'msk/nondiff' & 2 \\
\hline
\end{tabular}
\begin{tabular}{l|l|l}
\hline \begin{tabular}{l} 
Modulation \\
Scheme
\end{tabular} & Value of modtype & Valid Values of \(\boldsymbol{M}\) \\
\hline \begin{tabular}{l} 
Phase shift \\
keying (PSK) \\
with differential \\
encoding, where the \\
phase offset of the \\
constellation is 0
\end{tabular} & 'psk/diff' & 2,4 \\
\hline \begin{tabular}{l} 
Phase shift \\
keying (PSK) with \\
nondifferential \\
encoding, where the \\
phase offset of the \\
constellation is 0
\end{tabular} & 'psk/nondiff' & \(2,4,8,16,32\), or 64 \\
\hline \begin{tabular}{l} 
Offset quaternary \\
phase shift keying \\
(OQPSK)
\end{tabular} & 'oqpsk' & 4 \\
\hline \begin{tabular}{l} 
Quadrature \\
amplitude \\
modulation (QAM)
\end{tabular} & 'qam' & \begin{tabular}{l}
\(4,8,16,32,64,128\), \\
\hline
\end{tabular} \\
\hline
\end{tabular}
'msk/diff' is equivalent to conventional MSK (setting the 'Precoding' property of the MSK object to 'off'), while 'msk/nondiff' is equivalent to precoded MSK (setting the 'Precoding ' property of the MSK object to 'on').

Note The output ber is an upper bound on the BER in these cases:
- DQPSK (modtype \(=\) 'dpsk', \(\mathrm{M}=4\) )
- Cross QAM (modtype = 'qam ', M not a perfect square). In this case, note that the upper bound used here is slightly tighter than the upper bound used for cross QAM in the berawgn function.

When the function computes the BER, it assumes that symbols are Gray-coded. The function calculates the BER for values of \(\mathrm{E}_{\mathrm{b}} / \mathrm{N}_{0}\) in the range of \([0: 20] \mathrm{dB}\) and returns a vector of length 21 whose elements correspond to the different \(\mathrm{E}_{\mathrm{b}} / \mathrm{N}_{0}\) levels.

Note You must use a sufficiently long vector txsig, or else the calculated BER will be inaccurate. If the system's impulse response is L symbols long, the length of txsig should be at least \(\mathrm{m}^{\mathrm{L}}\). A common approach is to start with an augmented binary pseudonoise (PN) sequence of total length \(\left(\log _{2} M\right) M^{L}\). An augmented \(P N\) sequence is a PN sequence with an extra zero appended, which makes the distribution of ones and zeros equal.
```

ber = semianalytic(txsig,rxsig,modtype,M,Nsamp,num,den)

``` is the same as the previous syntax, except that the function filters rxsig with a receiver filter instead of an ideal integrator. The transfer function of the receiver filter is given in descending powers of \(z\) by the vectors num and den.
ber = semianalytic(txsig,rxsig, modtype, \(M\), Nsamp, EbNo) is the same as the first syntax, except that EbNo represents \(\mathrm{E}_{\mathrm{b}} / \mathrm{N}_{0}\), the ratio of bit energy to noise power spectral density, in dB . If EbNo is a vector, then the output ber is a vector of the same size, whose elements correspond to the different \(\mathrm{E}_{\mathrm{b}} / \mathrm{N}_{0}\) levels.
ber =
semianalytic(txsig,rxsig,modtype, M, Nsamp, num, den, EbNo) combines the functionality of the previous two syntaxes.
[ber, avgampl, avgpower] = semianalytic(...) returns the mean complex signal amplitude and the mean power of rxsig after filtering it by the receiver filter and sampling it at the symbol rate.

\section*{Examples}

A typical procedure for implementing the semianalytic technique is in "Procedure for the Semianalytic Technique". Sample code is in "Example: Using the Semianalytic Technique".

\author{
Limitations The function makes several important assumptions about the communication system. See "When to Use the Semianalytic Technique" to find out whether your communication system is suitable for the semianalytic technique and the semianalytic function. \\ \section*{See Also} \\ noisebw, qfunc, "Performance Results via the Semianalytic Technique" \\ References [1] Jeruchim, M. C., P. Balaban, and K. S. Shanmugan, Simulation of Communication Systems, New York, Plenum Press, 1992. \\ [2] Pasupathy, S., "Minimum Shift Keying: A Spectrally Efficient Modulation," IEEE Communications Magazine, July, 1979, pp. 14-22.
}

Purpose Sequence generator package
Syntax \(\quad h=\) seqgen.type(...)
Description
\(\mathrm{h}=\) seqgen.type (...) returns a sequence generator object, h , of a particular type (e.g., \(h=\) seqgen.pn).

Sequence generator objects have sets of properties and methods based on their type. A method common to all seqgen object types is generate, which is used to generate the specific sequence type.

Type help seqgen/types to get the complete listing of types.
Each seqgen object is equipped with additional type-specific functions for simulation. Type help seqgen.<type> (e.g., help seqgen.pn) to get the complete help on the specific type.

\section*{Example \(\quad h=\) seqgen.pn; \% construct PN Sequence Generator object}

\section*{See Also seqgen.pn}

\section*{Purpose \\ Construct default PN sequence generator object}

Note The MathWorks \({ }^{\text {TM }}\) will remove the seqgen function from a future version of the Communications Toolbox software. While the product still supports this function, you should use commsrc.pn instead.
```

Syntax
h = seqgen.pn
h = seqgen.pn(property1,value1,...)

```

Description
\(\mathrm{h}=\) seqgen. pn constructs a default PN sequence generator object h , and is equivalent to the following:
```

H = SEQGEN.PN('GenPoly', [1 0 0 0 0 1 1], ...
'InitialStates', [0 0 0 0 0 1], ...
'CurrentStates', [0 0 0 0 0 1], ...
'Mask', [0 0 0 0 0 1], ...
'NumBitsOut', 1)

```
or
```

H = SEQGEN.PN('GenPoly', [1 0 0 0 0 1 1], ...
'InitialStates', [0 0 0 0 0 1], ...
'CurrentStates', [0 0 0 0 0 1], ...
'Shift', 0, ...
'NumBitsOut', 1)

```
h = seqgen.pn(property1,value1,...) constructs a PN sequence generator object h with properties as specified by pairs of properties and values.

\section*{Methods}

PN sequence generator objects have the following methods.
\begin{tabular}{l|l}
\hline Method & Result \\
\hline generate & \begin{tabular}{l} 
Generate [NumBitsOut x 1] PN \\
sequence generator values.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{l|l}
\hline Method & Result \\
\hline reset & \begin{tabular}{l} 
Set the 'CurrentStates ' values \\
to the 'IntialStates ' values.
\end{tabular} \\
\hline getshift & \begin{tabular}{l} 
Get the actual or equivalent \\
'Shift' propertv value.
\end{tabular} \\
\hline getmask & \begin{tabular}{l} 
Get the actual or equivalent \\
'Mask' property value.
\end{tabular} \\
\hline
\end{tabular}

The following code shows how to get the 'Shift' or 'Mask' property values:
```

h = seqgen.pn('Shift', 0);
maskBits = getmask(h)
shiftVal = getshift(h)

```

\section*{Properties}

PN sequence generator objects have the following properties.
\begin{tabular}{l|l}
\hline Property & Description \\
\hline GenPoly & \begin{tabular}{l} 
Generator polynomial vector \\
array of bits; must be descending \\
order
\end{tabular} \\
\hline InitialStates & \begin{tabular}{l} 
Vector array (with length of the \\
general polynomial order) of \\
initial shift register values (in \\
bits)
\end{tabular} \\
\hline CurrentStates & \begin{tabular}{l} 
Vector array (with length of the \\
general polynomial order) of \\
present shift register values (in \\
bits)
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{l|l}
\hline Property & Description \\
\hline NumBitsOut & \begin{tabular}{l} 
Number of bits to output at each \\
generate method invocation
\end{tabular} \\
\hline Mask or Shift & \begin{tabular}{l} 
A mask vector of binary 0 and 1 \\
values is used to specify which \\
shift register state bits are XORed \\
to produce the resulting output \\
bit value.
\end{tabular} \\
\begin{tabular}{l} 
Alternatively, a scalar shift \\
value may be used to specify an \\
equivalent shift (either a delay or \\
advance) in the output sequence.
\end{tabular} \\
\hline
\end{tabular}
seqgen.pn objects also have either a 'Mask' (vector of mask bits) or 'Shift' (scalar shift value) property.

The 'GenPoly' property values specify the shift register connections. Enter these values as either a binary vector or a vector of exponents of the nonzero terms of the generator polynomial in descending order of powers. For the binary vector representation, the first and last elements of the vector must be 1 . For the descending-ordered polynomial representation, the last element of the vector must be 0 . For more information and examples, see "LFSR SSRG Details" on page 2-558.

\section*{Setting the GenPoly Property}

Every time this property is set, it will reset the entire object. In addition to changing the polynomial values, 'CurrentStates', 'InitialStates', and 'Mask' will be set to their default values ('NumBitsOut' will remain the same), and no warnings will be issued.

\section*{Setting the InitialStates Property}

Every time this property is set, it will also set 'CurrentStates ' to the new 'InitialStates' setting.
\[
\begin{array}{ll}
\text { LFSR SSRG } & \text { The generate method produces a pseudorandom noise (PN) sequence } \\
\text { Details } & \begin{array}{l}
\text { using a linear feedback shift register (LFSR). The LFSR is implemented } \\
\text { using a simple shift register generator (SSRG, or Fibonacci) } \\
\text { configuration, as shown below. }
\end{array}
\end{array}
\]

XOR addition


All \(r\) registers in the generator update their values at each time step according to the value of the incoming arrow to the shift register. The adders perform addition modulo 2 . The shift register is described by the 'GenPoly' property (generator polynomial), which is a primitive binary polynomial in \(z, \mathrm{~g}_{\mathrm{r}} \mathrm{z}^{\mathrm{r}}+\mathrm{g}_{\mathrm{r}-1} \mathrm{z}^{\mathrm{r}-1}+\mathrm{g}_{\mathrm{r}-2^{\mathrm{r}}} \mathrm{z}^{-2}+\ldots+\mathrm{g}_{0}\). The coefficient \(\mathrm{g}_{\mathrm{k}}\) is 1 if there is a connection from the kth register, as labeled in the preceding diagram, to the adder. The leading term \(\mathrm{g}_{\mathrm{r}}\) and the constant term \(\mathrm{g}_{0}\) of the 'GenPoly' property must be 1 because the polynomial must be primitive.

You can specify the Generator polynomial parameter using either of these formats:
- A vector that lists the coefficients of the polynomial in descending order of powers. The first and last entries must be 1 . Note that the length of this vector is one more than the degree of the generator polynomial.
- A vector containing the exponents of \(z\) for the nonzero terms of the polynomial in descending order of powers. The last entry must be 0 .

For example, \(\left[\begin{array}{llllllll}1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 1\end{array}\right]\) and \(\left[\begin{array}{lll}8 & 2 & 0\end{array}\right]\) represent the same polynomial, \(p(z)=z^{8}+z^{2}+1\).

The Initial states parameter is a vector specifying the initial values of the registers. The Initial states parameter must satisfy these criteria:
- All elements of the Initial states vector must be binary numbers.
- The length of the Initial states vector must equal the degree of the generator polynomial.

Note At least one element of the Initial states vector must be nonzero in order for the block to generate a nonzero sequence. That is, the initial state of at least one of the registers must be nonzero.

For example, the following table indicates two sets of parameter values that correspond to a generator polynomial of \(p(z)=z^{8}+z^{2}+1\).
\begin{tabular}{|c|c|c|}
\hline Quantity & Example 1 & Example 2 \\
\hline Generator polynomial & \[
\left.\begin{array}{l}
g 1 \\
1
\end{array}\right]=\left[\begin{array}{llllllll}
1 & 0 & 0 & 0 & 0 & 0 & 1 & 0
\end{array}\right.
\] & g 2 = \(\left.\begin{array}{lll}8 & 2 & 0\end{array}\right]\) \\
\hline Degree of generator polynomial & 8, which is length(g1)-1 & 8 \\
\hline Initial states & \(\left[\begin{array}{llllllll}1 & 0 & 0 & 0 & 0 & 0 & 1 & 0\end{array}\right]\) & \(\left[\begin{array}{llllllll}1 & 0 & 0 & 0 & 0 & 0 & 1 & 0\end{array}\right]\) \\
\hline
\end{tabular}

Output mask vector (or scalar shift value) shifts the starting point of the output sequence. With the default setting for this parameter, the only connection is along the arrow labeled \(m_{0}\), which corresponds to a shift of 0 . The parameter is described in greater detail below.
You can shift the starting point of the PN sequence with Output mask vector (or scalar shift value). You can specify the parameter in either of two ways:
- An integer representing the length of the shift
- A binary vector, called the mask vector, whose length is equal to the degree of the generator polynomial

The difference between the block's output when you set Output mask vector (or scalar shift value) to 0 , versus a positive integer \(d\), is shown in the following table.
\begin{tabular}{lllllll} 
& \(\mathbf{T}=\mathbf{0}\) & \(\mathbf{T}=\mathbf{1}\) & \(\mathbf{T}=\mathbf{2}\) & \(\ldots\) & \(\mathbf{T}=\mathbf{d}\) & \begin{tabular}{c}
\(\mathbf{T}=\) \\
\(\mathbf{d}+\mathbf{1}\)
\end{tabular} \\
Shift = 0 & \(x_{0}\) & \(x_{1}\) & \(x_{2}\) & \(\ldots\) & \(x_{\mathrm{d}}\) & \(x_{\mathrm{d}+1}\) \\
Shift = d & \(x_{\mathrm{d}}\) & \(x_{\mathrm{d}+1}\) & \(x_{\mathrm{d}+2}\) & \(\ldots\) & \(x_{2 \mathrm{~d}}\) & \(x_{2 \mathrm{~d}+1}\)
\end{tabular}

Alternatively, you can set Output mask vector (or scalar shift value) to a binary vector, corresponding to a polynomial in \(z, \mathrm{~m}_{\mathrm{r}-1} \mathrm{z}^{\mathrm{r}-1}\) \(+\mathrm{m}_{\mathrm{r}-2} \mathrm{z}^{\mathrm{r}-2}+\ldots+\mathrm{m}_{1} \mathrm{z}+\mathrm{m}_{0}\), of degree at most \(\mathrm{r}-1\). The mask vector corresponding to a shift of \(d\) is the vector that represents \(m(z)=z^{d}\) modulo \(\mathrm{g}(z)\), where \(\mathrm{g}(z)\) is the generator polynomial. For example, if the degree of the generator polynomial is 4 , then the mask vector corresponding to \(\mathrm{d}=2\) is \(\left[\begin{array}{lll}0 & 1 & 0\end{array} 0\right]\), which represents the polynomial \(m(z)=z^{2}\). The preceding schematic diagram shows how Output mask vector (or scalar shift value) is implemented when you specify it as a mask vector. The default setting for Output mask vector (or scalar shift value) is 0 . You can calculate the mask vector using the Communications Toolbox function shift2mask.

\section*{Sequences of Maximum Length}

If you want to generate a sequence of the maximum possible length for a fixed degree, \(r\), of the generator polynomial, you can set Generator polynomial to a value from the following table. See Proakis, John G., Digital Communications, Third edition, New York, McGraw Hill, 1995 for more information about the shift-register configurations that these polynomials represent.
\begin{tabular}{|c|c|c|c|}
\hline r & Generator Polynomial & r & Generator Polynomial \\
\hline 2 & \(\left[\begin{array}{lll}2 & 1 & 0\end{array}\right]\) & 21 & \(\left[\begin{array}{llll}21 & 19 & 0\end{array}\right]\) \\
\hline 3 & \(\left[\begin{array}{lll}3 & 2 & 0\end{array}\right]\) & 22 & \(\left[\begin{array}{lll}22 & 21 & 0\end{array}\right]\) \\
\hline 4 & \(\left[\begin{array}{lll}4 & 3 & 0\end{array}\right]\) & 23 & \(\left[\begin{array}{llll}23 & 18 & 0\end{array}\right]\) \\
\hline 5 & \(\left[\begin{array}{lll}5 & 3 & 0\end{array}\right]\) & 24 & \(\left[\begin{array}{lllll}24 & 23 & 22 & 17 & 0\end{array}\right]\) \\
\hline 6 & \(\left[\begin{array}{lll}6 & 5 & 0\end{array}\right]\) & 25 & \(\left[\begin{array}{lll}25 & 22 & 0\end{array}\right]\) \\
\hline 7 & \(\left[\begin{array}{lll}7 & 6 & 0\end{array}\right]\) & 26 & \(\left[\begin{array}{lllll}26 & 25 & 24 & 20 & 0\end{array}\right]\) \\
\hline 8 & [ 8 8 \(6 \times 54 c c]\) & 27 & \(\left[\begin{array}{llllll}27 & 26 & 25 & 22 & 0\end{array}\right]\) \\
\hline 9 & \(\left[\begin{array}{lll}9 & 5 & 0\end{array}\right]\) & 28 & \(\left[\begin{array}{llll}28 & 25 & 0\end{array}\right]\) \\
\hline 10 & [1070] & 29 & \(\left[\begin{array}{lll}29 & 27 & 0\end{array}\right]\) \\
\hline 11 & \(\left[\begin{array}{llll}11 & 9 & 0\end{array}\right]\) & 30 & \(\left[\begin{array}{lllll}30 & 29 & 28 & 7 & 0\end{array}\right]\) \\
\hline 12 & \(\left[\begin{array}{lllll}12 & 11 & 8 & 6 & 0\end{array}\right]\) & 31 & \(\left[\begin{array}{lll}31 & 28 & 0\end{array}\right]\) \\
\hline 13 & \(\left[\begin{array}{llllll}13 & 12 & 10 & 9 & 0\end{array}\right]\) & 32 & \(\left[\begin{array}{llllll}32 & 31 & 30 & 10 & 0\end{array}\right]\) \\
\hline 14 & \(\left[\begin{array}{llllll}14 & 13 & 8 & 4 & 0\end{array}\right]\) & 33 & \(\left[\begin{array}{llll}33 & 20 & 0\end{array}\right]\) \\
\hline 15 & [ \(\left.\begin{array}{llll}15 & 14 & 0\end{array}\right]\) & 34 & \(\left[\begin{array}{llllll}34 & 15 & 14 & 1 & 0\end{array}\right]\) \\
\hline 16 & \(\left[\begin{array}{lllll}16 & 15 & 13 & 4 & 0\end{array}\right]\) & 35 & \(\left[\begin{array}{llll}35 & 2 & 0\end{array}\right]\) \\
\hline 17 & [ \(\left.\begin{array}{llll}17 & 14 & 0\end{array}\right]\) & 36 & \(\left[\begin{array}{llll}36 & 11 & 0\end{array}\right]\) \\
\hline 18 & \(\left[\begin{array}{llll}18 & 11 & 0\end{array}\right]\) & 37 & [37 1210200\(]\) \\
\hline 19 & \(\left[\begin{array}{lllll}19 & 18 & 17 & 14 & 0\end{array}\right]\) & 38 & [38 651100 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline r & Generator Polynomial & r & Generator Polynomial \\
\hline 20 & \(\left[\begin{array}{llll}20 & 17 & 0\end{array}\right]\) & 39 & [39 8 0] \\
\hline 40 & \(\left[\begin{array}{llllll}40 & 5 & 4 & 3 & 0\end{array}\right]\) & 47 & [47 14 0] \\
\hline 41 & \(\left[\begin{array}{lll}41 & 3 & 0\end{array}\right]\) & 48 & [48 2827100 \\
\hline 42 & \(\left[\begin{array}{lllll}42 & 23 & 22 & 1 & 0\end{array}\right]\) & 49 & [49 9 0] \\
\hline 43 & \(\left[\begin{array}{lllll}43 & 6 & 4 & 3 & 0\end{array}\right]\) & 50 & [50 433200\(]\) \\
\hline 44 &  & 51 & [51 633110\(]\) \\
\hline 45 & \(\left[\begin{array}{llllll}45 & 4 & 3 & 1 & 0\end{array}\right]\) & 52 & [52 3 0] \\
\hline 46 & \(\left[\begin{array}{lllll}46 & 21 & 10 & 1 & 0\end{array}\right]\) & 53 & [53 662110\(]\) \\
\hline
\end{tabular}

\section*{Examples Setting up the PN Sequence Generator}


This figure defines a PN sequence generator with a generator polynomial \(p(z)=z^{6}+z+1\). You can set up the PN sequence generator by typing the following at the MATLAB command line:
h = seqgen.pn('GenPoly', [10 000011\(]\), 'MaskOrShift', [1 1010 1])

Alternatively, you can input GenPoly as the exponents of \(z\) for the nonzero terms of the polynomial in descending order of powers:
```

h = seqgen.pn('GenPoly', [6 1 0], 'MaskOrShift', [1 1 0 1 0
1])

```

\section*{General Use of seqgen.pn}

The following is an example of typical usage:
```

% Construct a PN object
h = seqgen.pn('Shift', O);
% Output 10 PN bits
set(h, 'NumBitsOut', 10);
generate(h)
% Output 10 more PN bits
generate(h)
% Reset (to the initial shift register state values)
reset(h);
% Output 4 PN bits
set(h, 'NumBitsOut', 4);
generate(h)

```

\section*{Behavior of a Copied seqgen.pn Object}

When a seqgen.pn object is copied, its states are also copied. The subsequent outputs, therefore, from the copied object are likely to be different from the initial outputs from the original object. The following code illustrates this behavior:
```

h = seqgen.pn('Shift', 0);
set(h, 'NumBitsOut', 5);
generate(h)

```
h generates the sequence:

0
0
However, if h is copied to g , and g is made to generate a sequence:
```

g=copy(h);
generate(g)

```
the generated sequence is different from that initially generated from h :
```

0
1
0
0
0

```

This difference ocurrs because the state of h having generated 5 bits was copied to \(g\). If \(g\) is reset:
```

reset(g);
generate(g)

```
then it generates the same sequence that h did:
1
0
0
0
0
See Also mask2shift, seqgen, shift2mask

\section*{Purpose}

Convert shift to mask vector for shift register configuration
Syntax mask = shift2mask(prpoly, shift)
Description
mask = shift2mask(prpoly, shift) returns the mask that is equivalent to the shift (or offset) specified by shift, for a linear feedback shift register whose connections are specified by the primitive polynomial prpoly. The prpoly input can have one of these formats:
- A binary vector that lists the coefficients of the primitive polynomial in order of descending powers
- An integer scalar whose binary representation gives the coefficients of the primitive polynomial, where the least significant bit is the constant term

The shift input is an integer scalar.

Note To save time, shift2mask does not check that prpoly is primitive. If it is not primitive, the output is not meaningful. To find primitive polynomials, use primpoly or see [2].

\section*{Definition of Equivalent Mask}

The equivalent mask for the shift s is the remainder after dividing the polynomial \(x^{s}\) by the primitive polynomial. The vector mask represents the remainder polynomial by listing the coefficients in order of descending powers.

\section*{Shifts, Masks, and Pseudonoise Sequence Generators}

Linear feedback shift registers are part of an implementation of a pseudonoise sequence generator. Below is a schematic diagram of a pseudonoise sequence generator. All adders perform addition modulo 2.


The primitive polynomial determines the state of each switch labeled \(\mathrm{g}_{\mathrm{k}}\), and the mask determines the state of each switch labeled \(\mathrm{m}_{\mathrm{k}}\). The lower half of the diagram shows the implementation of the shift, which delays the starting point of the output sequence. If the shift is zero, the \(\mathrm{m}_{0}\) switch is closed while all other \(\mathrm{m}_{\mathrm{k}}\) switches are open. The table below indicates how the shift affects the shift register's output.
\begin{tabular}{l|l|l|l|l|l|l}
\hline & T = 0 & \(\mathbf{T}=\mathbf{1}\) & \(\mathbf{T}=\mathbf{2}\) & \(\boldsymbol{\cdots}\) & \(\mathbf{T}=\mathbf{s}\) & \(\mathbf{T}=\mathbf{s + 1}\) \\
\hline \begin{tabular}{l} 
Shift \(=\) \\
\(\mathbf{0}\)
\end{tabular} & \(\mathrm{x}_{0}\) & \(\mathrm{x}_{1}\) & \(\mathrm{x}_{2}\) & \(\ldots\) & \(\mathrm{x}_{\mathrm{s}}\) & \(\mathrm{x}_{\mathrm{s}+1}\) \\
\hline \begin{tabular}{l} 
Shift \(=\) \\
\(\mathbf{s} \boldsymbol{>} \mathbf{0}\)
\end{tabular} & \(\mathrm{x}_{\mathrm{s}}\) & \(\mathrm{x}_{\mathrm{s}+1}\) & \(\mathrm{x}_{\mathrm{s}+2}\) & \(\ldots\) & \(\mathrm{x}_{2 \mathrm{~s}}\) & \(\mathrm{x}_{2 \mathrm{~s}+1}\) \\
\hline
\end{tabular}

If you have Communications Blockset software and want to generate a pseudonoise sequence in a Simulink \({ }^{\circledR}\) model, see the reference page for the PN Sequence Generator block in the blockset's documentation set.

\section*{Examples}

See Also mask2shift, deconv, isprimitive, primpoly
References
The command below converts a shift of 5 into the equivalent mask \(x^{3}+x+1\), for the linear feedback shift register whose connections are specified by the primitive polynomial \(x^{4}+x^{3}+1\).
```

mk = shift2mask([1 1 1 0 0 1],5)
mk =

```
\(1 \quad 0 \quad 1\) 1
[1] Lee, J. S., and L. E. Miller, CDMA Systems Engineering Handbook, Boston, Artech House, 1998.
[2] Simon, Marvin K., Jim K. Omura, et al., Spread Spectrum Communications Handbook, New York, McGraw-Hill, 1994.

Purpose Construct signed least mean square (LMS) adaptive algorithm object
Syntax \(\quad \begin{aligned} \text { alg } & =\text { signlms (stepsize) } \\ \text { alg } & =\text { signlms (stepsize, algtype) }\end{aligned}\)

\section*{Description}

The signlms function creates an adaptive algorithm object that you can use with the lineareq function or dfe function to create an equalizer object. You can then use the equalizer object with the equalize function to equalize a signal. To learn more about the process for equalizing a signal, see "Using Adaptive Equalizer Functions and Objects".
alg = signlms(stepsize) constructs an adaptive algorithm object based on the signed least mean square (LMS) algorithm with a step size of stepsize.
alg = signlms(stepsize, algtype) constructs an adaptive algorithm object of type algtype from the family of signed LMS algorithms. The table below lists the possible values of algtype.
\begin{tabular}{l|l}
\hline Value of algtype & Type of Signed LMS Algorithm \\
\hline 'Sign LMS' & Sign LMS (default) \\
\hline 'Signed Regressor LMS' & Signed regressor LMS \\
\hline 'Sign Sign LMS' & Sign-sign LMS \\
\hline
\end{tabular}

\section*{Properties}

The table below describes the properties of the signed LMS adaptive algorithm object. To learn how to view or change the values of an adaptive algorithm object, see "Accessing Properties of an Adaptive Algorithm".
\begin{tabular}{l|l}
\hline Property & Description \\
\hline AlgType & \begin{tabular}{l} 
Type of signed LMS algorithm, \\
corresponding to the algtype \\
input argument. You cannot \\
change the value of this property \\
after creating the object.
\end{tabular} \\
\hline StepSize & \begin{tabular}{l} 
LMS step size parameter, a \\
nonnegative real number
\end{tabular} \\
\hline LeakageFactor & \begin{tabular}{l} 
LMS leakage factor, a real \\
number between 0 and 1. A value \\
of 1 corresponds to a conventional \\
weight update algorithm, while \\
a value of 0 corresponds to a \\
memoryless update algorithm.
\end{tabular} \\
\hline
\end{tabular}

\section*{Algorithm}

See Also
References

Referring to the schematics presented in "Overview of Adaptive Equalizer Classes", define \(w\) as the vector of all weights \(w_{i}\) and define \(u\) as the vector of all inputs \(u_{i}\). Based on the current set of weights, \(w\), this adaptive algorithm creates the new set of weights given by
- (LeakageFactor) w + (StepSize) \(u^{*} \operatorname{sgn}(\operatorname{Re}(e))\), for sign LMS
- (LeakageFactor) w + (StepSize) sgn(Re(u)) Re(e), for signed regressor LMS
- (LeakageFactor) \(w+(S t e p S i z e) ~ s g n(R e(u)) ~ s g n(R e(e))\), for sign-sign LMS
where the * operator denotes the complex conjugate and sgn denotes the signum function (sign in MATLAB technical computing software).
lms, normlms, varlms, rls, cma, lineareq, dfe, equalize, "Equalizers"
[1] Farhang-Boroujeny, B., Adaptive Filters: Theory and Applications, Chichester, England, John Wiley \& Sons, 1998.
[2] Kurzweil, J., An Introduction to Digital Communications, New York, John Wiley \& Sons, 2000.

\section*{Purpose Single sideband amplitude demodulation}
```

Syntax
z = ssbdemod(y,Fc,Fs)
z = ssbdemod(y,Fc,Fs,ini_phase)
z = ssbdemod(y,Fc,Fs,ini_phase,num,den)

```

\section*{Description}

\section*{Examples}

\section*{For All Syntaxes}
z = ssbdemod(y,Fc,Fs) demodulates the single sideband amplitude modulated signal y from the carrier signal having frequency Fc (Hz). The carrier signal and y have sampling rate Fs (Hz). The modulated signal has zero initial phase, and can be an upper- or lower-sideband signal. The demodulation process uses the lowpass filter specified by [num,den] = butter(5,Fc*2/Fs).

Note The Fc and Fs arguments must satisfy Fs > 2(Fc + BW), where BW is the bandwidth of the original signal that was modulated.
z = ssbdemod(y,Fc,Fs,ini_phase) specifies the initial phase of the modulated signal in radians.
z = ssbdemod(y,Fc,Fs,ini_phase, num, den) specifies the numerator and denominator of the lowpass filter used in the demodulation.

The code below shows that ssbdemod can demodulate an upper-sideband or lower-sideband signal.
```

Fc = 12000; Fs = 270000;
t = [0:1/Fs:0.01]';
s = sin(2*pi*300*t)+2*sin(2*pi*600*t);
y1 = ssbmod(s,Fc,Fs,0); % Lower-sideband modulated signal
y2 = ssbmod(s,Fc,Fs,0,'upper'); % Upper-sideband modulated signal
s1 = ssbdemod(y1,Fc,Fs); % Demodulate lower sideband
s2 = ssbdemod(y2,Fc,Fs); % Demodulate upper sideband
% Plot results to show that the curves overlap.
figure; plot(t,s1,'r-',t,s2,'k--');

```
legend('Demodulation of upper sideband','Demodulation of lower sideband')


See Also
ssbmod, amdemod, "Modulation"
\begin{tabular}{|c|c|}
\hline Purpose & Single sideband amplitude modulation \\
\hline \multirow[t]{3}{*}{Syntax} & \(y=\operatorname{ssbmod}(\mathrm{x}, \mathrm{Fc}, \mathrm{Fs})\) \\
\hline & \(\mathrm{y}=\operatorname{ssbmod}(\mathrm{x}, \mathrm{Fc}, \mathrm{Fs}\), ini_phase) \\
\hline & \(\mathrm{y}=\operatorname{ssbmod}(\mathrm{x}, \mathrm{fc}, \mathrm{fs}\), ini_phase, 'upper') \\
\hline \multirow[t]{5}{*}{Description} & \(y=\operatorname{ssbmod}(\mathrm{x}, \mathrm{Fc}, \mathrm{Fs})\) uses the message signal x to modulate a \\
\hline & carrier signal with frequency \(\mathrm{Fc}(\mathrm{Hz})\) using single sideband amplitude modulation in which the lower sideband is the desired sideband. The \\
\hline & carrier signal and x have sample frequency \(\mathrm{Fs}(\mathrm{Hz})\). The modulated signal has zero initial phase. \\
\hline & \(y=\operatorname{ssbmod}(x, F c, F s\), ini_phase \()\) specifies the initial phase of the modulated signal in radians. \\
\hline & \(y=\operatorname{ssbmod}(x, f c, f s\), ini_phase, 'upper') uses the upper sideband as the desired sideband. \\
\hline Examples & An example using ssbmod is on the reference page for ammod. \\
\hline See Also & ssbdemod, ammod, "Modulation" \\
\hline
\end{tabular}

\section*{stdchan}

\section*{Purpose}

Construct channel object from set of standardized channel models
Syntax

Description
chan \(=\) stdchan(ts,fd, chantype)
[chan, chanprofile] = stdchan(...)
chan \(=\) stdchan(ts,fd, chantype) constructs a fading channel object chan according to the specified chantype. The input string chantype is chosen from the set of standardized channel profiles listed below. ts is the sample time of the input signal, in seconds. fd is the maximum Doppler shift, in Hertz.
[chan, chanprofile] = stdchan(...) also returns a structure chanprofile containing the parameters of the channel profile specified by chantype.

\section*{Channel \\ Models}

COST 207 channel models (The Rician K factors for the cases cost207RAx4 and cost207RAx6 are chosen as in 3GPP TS 45.005 V7.9.0 (2007-2)):
\begin{tabular}{l|l}
\hline Channel model & Profile \\
\hline cost207RAx4 & Rural Area (RAx), 4 taps \\
\hline cost207RAx6 & Rural Area (RAx), 6 taps \\
\hline cost207TUx6 & Typical Urban (TUx), 6 taps \\
\hline cost207TUx6alt & \begin{tabular}{l} 
Typical Urban (TUx), 6 taps, \\
alternative
\end{tabular} \\
\hline cost207TUx12 & Typical Urban (TUx), 12 taps \\
\hline cost207TUx12alt & \begin{tabular}{l} 
Typical Urban (TUx), 12 taps, \\
alternative
\end{tabular} \\
\hline cost207BUx6 & Bad Urban (BUx), 6 taps \\
\hline cost207BUx6alt & \begin{tabular}{l} 
Bad Urban (BUx), 6 taps, \\
alternative
\end{tabular} \\
\hline cost207BUx12 & Bad Urban (BUx), 12 taps \\
\hline
\end{tabular}
\begin{tabular}{l|l}
\hline Channel model & Profile \\
\hline cost207BUx12alt & \begin{tabular}{l} 
Bad Urban (BUx), 12 taps, \\
alternative
\end{tabular} \\
\hline cost207HTx6 & Hilly Terrain (HTx), 6 taps \\
\hline cost207HTx6alt & \begin{tabular}{l} 
Hilly Terrain (HTx), 6 taps, \\
alternative
\end{tabular} \\
\hline cost207HTx12 & Hilly Terrain (HTx), 12 taps \\
\hline cost207HTx12alt & \begin{tabular}{l} 
Hilly Terrain (HTx), 12 taps, \\
alternative
\end{tabular} \\
\hline
\end{tabular}

GSM/EDGE channel models (3GPP TS 45.005 V7.9.0 (2007-2), 3GPP TS 05.05 V8.20.0 (2005-11)):
\begin{tabular}{l|l}
\hline Channel model & Profile \\
\hline gsmRAx6c1 & \begin{tabular}{l} 
Typical case for rural area (RAx), \\
6 taps, case 1
\end{tabular} \\
\hline gsmRAx4c2 & \begin{tabular}{l} 
Typical case for rural area (RAx), \\
4 taps, case 2
\end{tabular} \\
\hline gsmHTx12c1 & \begin{tabular}{l} 
Typical case for hilly terrain \\
(HTx), 12 taps, case 1
\end{tabular} \\
\hline gsmHTx12c2 & \begin{tabular}{l} 
Typical case for hilly terrain \\
(HTx), 12 taps, case 2
\end{tabular} \\
\hline gsmHTx6c1 & \begin{tabular}{l} 
Typical case for hilly terrain \\
(HTx), 6 taps, case 1
\end{tabular} \\
\hline gsmHTx6c2 & \begin{tabular}{l} 
Typical case for hilly terrain \\
(HTx), 6 taps, case 2
\end{tabular} \\
\hline gsmTUx12c1 & \begin{tabular}{l} 
Typical case for urban area (TUx), \\
12 taps, case 1
\end{tabular} \\
\hline gsmTUx12c1 & \begin{tabular}{l} 
Typical case for urban area (TUx), \\
12 taps, case 2
\end{tabular} \\
\hline
\end{tabular}

\section*{stdchan}
\begin{tabular}{l|l}
\hline Channel model & Profile \\
\hline gsmTUx6c1 & Typical case for urban area (TUx), \\
& 6 taps, case 1
\end{tabular}, \begin{tabular}{l} 
Typical case for urban area (TUx), \\
\hline gsmTUx6c2 \\
\hline gsmEQx6 taps, case 2 \\
\hline gsmTIx2 \\
\\
\hline
\end{tabular} \begin{tabular}{l} 
Profile for equalization test (EQx), \\
6 taps
\end{tabular}, \begin{tabular}{l} 
Typical case for very small cells \\
\\
\hline (TIx), 2 taps \\
\hline
\end{tabular}

3GPP channel models for deployment evaluation (3GPP TR 25.943 V6.0.0 (2004-12)):
\begin{tabular}{l|l}
\hline Channel model & Profile \\
\hline 3gppTUx & \begin{tabular}{l} 
Typical Urban channel model \\
(TUx)
\end{tabular} \\
\hline 3gppRAx & Rural Area channel model (RAx) \\
\hline 3gppHTx & \begin{tabular}{l} 
Hilly Terrain channel model \\
(HTx)
\end{tabular} \\
\hline
\end{tabular}

ITU-R 3G channel models (ITU-R M. 1225 (1997-2)):
\begin{tabular}{l|l}
\hline Channel model & Profile \\
\hline itur3GIAx & Indoor office, channel A \\
\hline itur3GIBx & Indoor office, channel B \\
\hline itur3GPAx & \begin{tabular}{l} 
Outdoor to indoor and pedestrian, \\
channel A
\end{tabular} \\
\hline itur3GPBx & \begin{tabular}{l} 
Outdoor to indoor and pedestrian, \\
channel B
\end{tabular} \\
\hline itur3GVAx & \begin{tabular}{l} 
Vehicular - high antenna, channel \\
A
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{l|l}
\hline Channel model & Profile \\
\hline itur3GVBx & \begin{tabular}{l} 
Vehicular - high antenna, channel \\
B
\end{tabular} \\
\hline itur3GSAxLOS & Satellite, channel A, LOS \\
\hline itur3GSAxNLOS & Satellite, channel A, NLOS \\
\hline itur3GSBxLOS & Satellite, channel B, LOS \\
\hline itur3GSBxNLOS & Satellite, channel B, NLOS \\
\hline itur3GSCxLOS & Satellite, channel C, LOS \\
\hline itur3GSCxNLOS & Satellite, channel C, NLOS \\
\hline
\end{tabular}

ITU-R HF channel models (ITU-R F. 1487 (2000)) (FD must be 1 to obtain the correct frequency spreads for these models.):
\begin{tabular}{l|l}
\hline Channel model & Profile \\
\hline iturHFLQ & Low latitudes, Quiet conditions \\
\hline iturHFLM & \begin{tabular}{l} 
Low latitudes, Moderate \\
conditions
\end{tabular} \\
\hline iturHFLD & \begin{tabular}{l} 
Low latitudes, Disturbed \\
conditions
\end{tabular} \\
\hline iturHFMQ & \begin{tabular}{l} 
Medium latitudes, Quiet \\
conditions
\end{tabular} \\
\hline iturHFMM & \begin{tabular}{l} 
Medium latitudes, Moderate \\
conditions
\end{tabular} \\
\hline iturHFMD & \begin{tabular}{l} 
Medium latitudes, Disturbed \\
conditions
\end{tabular} \\
\hline iturHFMDV & \begin{tabular}{l} 
Medium latitudes, Disturbed \\
conditions near vertical incidence
\end{tabular} \\
\hline iturHFHQ & High latitudes, Quiet conditions \\
\hline
\end{tabular}

\section*{stdchan}
\begin{tabular}{l|l}
\hline Channel model & Profile \\
\hline iturHFHM & \begin{tabular}{l} 
High latitudes, Moderate \\
conditions
\end{tabular} \\
\hline iturHFHD & \begin{tabular}{l} 
High latitudes, Disturbed \\
conditions
\end{tabular} \\
\hline
\end{tabular}

JTC channel models:
\begin{tabular}{|c|c|}
\hline Channel model & Profile \\
\hline jtcInResA & Indoor residential A \\
\hline jtcInResB & Indoor residential B \\
\hline jtcInResC & Indoor residential C \\
\hline jtcInOff \({ }^{\text {a }}\) & Indoor office A \\
\hline jtcInOffB & Indoor office B \\
\hline jtcInOffC & Indoor office C \\
\hline jtcInComA & Indoor commercial A \\
\hline jtcInComB & Indoor commercial B \\
\hline jtcInComC & Indoor commercial C \\
\hline jtcOutUrbHRLAA & Outdoor urban high-rise areas Low antenna A \\
\hline jtcOutUrbHRLAB & Outdoor urban high-rise areas Low antenna B \\
\hline jtcOutUrbHRLAC & Outdoor urban high-rise areas Low antenna C \\
\hline jtcOutUrbLRLAA & Outdoor urban low-rise areas Low antenna A \\
\hline
\end{tabular}
\begin{tabular}{l|l}
\hline Channel model & Profile \\
\hline jtcOutUrbLRLAB & \begin{tabular}{l} 
Outdoor urban low-rise areas - \\
Low antenna B
\end{tabular} \\
\hline jtcOutUrbLRLAC & \begin{tabular}{l} 
Outdoor urban low-rise areas - \\
Low antenna C
\end{tabular} \\
\hline jtcOutResLAA & \begin{tabular}{l} 
Outdoor residential areas - Low \\
antenna A
\end{tabular} \\
\hline jtcOutResLAB & \begin{tabular}{l} 
Outdoor residential areas - Low \\
antenna B
\end{tabular} \\
\hline jtcOutResLAC & \begin{tabular}{l} 
Outdoor residential areas - Low \\
antenna C
\end{tabular} \\
\hline jtcOutUrbHRHAA & \begin{tabular}{l} 
Outdoor urban high-rise areas - \\
High antenna A
\end{tabular} \\
\hline jtcOutUrbHRHAB & \begin{tabular}{l} 
Outdoor urban high-rise areas - \\
High antenna B
\end{tabular} \\
\hline jtcOutUrbHRHAC & \begin{tabular}{l} 
Outdoor urban high-rise areas - \\
High antenna C
\end{tabular} \\
\hline jtcOutUrbLRHAA & \begin{tabular}{l} 
Outdoor urban low-rise areas - \\
High antenna A
\end{tabular} \\
\hline\(j t c O u t U r b L R H A B\) & \begin{tabular}{l} 
Outdoor urban low-rise areas - \\
High antenna B
\end{tabular} \\
\hline jtcOutUrbLRHAC & \begin{tabular}{l} 
Outdoor urban low-rise areas - \\
High antenna C
\end{tabular} \\
\hline jtcOutResHAA & \begin{tabular}{l} 
Outdoor residential areas - High \\
antenna A
\end{tabular} \\
\hline\(j t c O u t R e s H A B\) & \begin{tabular}{l} 
Outdoor residential areas - High \\
antenna B
\end{tabular} \\
\hline\(j t c O u t R e s H A C\) & \begin{tabular}{l} 
Outdoor residential areas - High \\
antenna C
\end{tabular} \\
\hline
\end{tabular}

\section*{stdchan}

HIPERLAN/2 channel models:
\begin{tabular}{l|l}
\hline Channel model & Profile \\
\hline hiperlan2A & Model A \\
\hline hiperlan2B & Model B \\
\hline hiperlan2C & Model C \\
\hline hiperlan2D & Model D \\
\hline hiperlan2E & Model E \\
\hline
\end{tabular}
\(802.11 \mathrm{a} / \mathrm{b} / \mathrm{g}\) channel models:
\(802.11 \mathrm{a} / \mathrm{b} / \mathrm{g}\) channel models share a common multipath delay profile

Note TS should not be larger than TRMS/2, as per 802.11 specifications.

\section*{Channel model}
802.11a
802.11b
802.11 g

\section*{Example}

See Also
```

ts = 0.1e-4; fd = 200;
chan = stdchan(ts, fd, 'cost207TUx6');
chan.NormalizePathGains = 1;
chan.StoreHistory = 1;
y = filter(chan, ones(1,5e4));
plot(chan);

```
doppler, rayleighchan, and ricianchan

\section*{Purpose}

Compute number of symbol errors and symbol error rate

\section*{Syntax}
[number,ratio] = symerr(x,y)
[number, ratio] = symerr(x,y,flg)
[number, ratio,loc] = symerr(...)

\section*{Description}

\section*{For All Syntaxes}

The symer function compares binary representations of elements in \(x\) with those in \(y\). The schematics below illustrate how the shapes of \(x\) and y determine which elements symerr compares.


The output number is a scalar or vector that indicates the number of elements that differ. The size of number is determined by the optional input \(f l g\) and by the dimensions of x and y . The output ratio equals number divided by the total number of elements in the smaller input.

\section*{For Specific Syntaxes}
[number, ratio] \(=\operatorname{symerr}(x, y)\) compares the elements in \(x\) and \(y\). The sizes of \(x\) and \(y\) determine which elements are compared:
- If \(x\) and \(y\) are matrices of the same dimensions, then symerr compares \(x\) and \(y\) element by element. number is a scalar. See schematic (a) in the figure.
- If one is a row (respectively, column) vector and the other is a two-dimensional matrix, then symerr compares the vector element by element with each row (resp., column) of the matrix. The length
of the vector must equal the number of columns (resp., rows) in the matrix. number is a column (resp., row) vector whose mth entry indicates the number of elements that differ when comparing the vector with the mth row (resp., column) of the matrix. See schematics (b) and (c) in the figure.
[number, ratio] = symerr \((x, y, f l g)\) is similar to the previous syntax, except that \(f l g\) can override the defaults that govern which elements symerr compares and how symerr computes the outputs. The values of \(f l g\) are 'overall', 'column-wise', and 'row-wise'. The table below describes the differences that result from various combinations of inputs. In all cases, ratio is number divided by the total number of elements in \(y\).

\section*{Comparing a Two-Dimensional Matrix x with Another Input y}
\begin{tabular}{l|l|l|l}
\hline Shape of \(\mathbf{y}\) & flg & \begin{tabular}{l} 
Type of \\
Comparison
\end{tabular} & number \\
\hline \begin{tabular}{l} 
Two-dim. \\
matrix
\end{tabular} & \begin{tabular}{l} 
'overall' \\
(default)
\end{tabular} & \begin{tabular}{l} 
Element by \\
element
\end{tabular} & \begin{tabular}{l} 
Total number of \\
symbol errors
\end{tabular} \\
\cline { 2 - 4 } & 'column-wise' ' & \begin{tabular}{l} 
mth column of x \\
vs. mth column \\
of y
\end{tabular} & \begin{tabular}{l} 
Row vector \\
whose entries \\
count symbol \\
errors in each \\
column
\end{tabular} \\
\cline { 2 - 4 } & 'row-wise' & \begin{tabular}{l} 
mth row of x vs. \\
mth row of y
\end{tabular} & \begin{tabular}{l} 
Column vector \\
whose entries \\
count symbol \\
errors in each \\
row
\end{tabular} \\
\hline
\end{tabular}

\section*{Comparing a Two-Dimensional Matrix x with Another Input y (Continued)}
\begin{tabular}{|c|c|c|c|}
\hline Shape of \(y\) & \(\mathbf{f l g}\) & Type of Comparison & number \\
\hline \multirow[t]{2}{*}{Column vector} & 'overall' & y vs. each column of \(x\) & Total number of symbol errors \\
\hline & 'column-wise' (default) & \(y\) vs. each column of \(x\) & Row vector whose entries count symbol errors in each column of \(x\) \\
\hline \multirow[t]{2}{*}{Row vector} & 'overall' & y vs. each row of \(x\) & Total number of symbol errors \\
\hline & 'row-wise' (default) & y vs. each row of \(x\) & Column vector whose entries count symbol errors in each row of \(x\) \\
\hline
\end{tabular}
[number, ratio,loc] = symerr(...) returns a binary matrix loc that indicates which elements of \(x\) and \(y\) differ. An element of loc is zero if the corresponding comparison yields no discrepancy, and one otherwise.

\section*{Examples}

On the reference page for biterr, the last example uses symerr.
The command below illustrates how symerr works when one argument is a vector and the other is a matrix. It compares the vector [ \(1,2,3\) ] ' to the columns
\[
\left[\begin{array}{l}
1 \\
3 \\
3
\end{array}\right],\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right],\left[\begin{array}{l}
3 \\
2 \\
8
\end{array}\right] \text {, and }\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]
\]
of the matrix.
```

num = symerr([[1 2 3]',[[1 1 3 1;3 2 2 2; 3 3 8 3])
num =
1 0 2 0

```

As another example, the command below illustrates the use of \(f l g\) to override the default row-by-row comparison. Notice that number and ratio are scalars.
```

format rat;
[number,ratio,loc] = symerr([1 2; 3 4],[1 3],'overall')

```

The output is below.
number \(=\)
3
ratio =
3/4
loc \(=\)
\begin{tabular}{ll}
0 & 1 \\
1 & 1
\end{tabular}
biterr, "Performance Results via Simulation"
Purpose Produce syndrome decoding table
Syntax \(\mathrm{t}=\) syndtable(h)
Description \(\mathrm{t}=\) syndtable( h ) returns a decoding table for an error-correctingbinary code having codeword length n and message length k . his an ( \(\mathrm{n}-\mathrm{k}\) )-by- n parity-check matrix for the code. t is a \(2^{\mathrm{n}-\mathrm{k}}\)-by-nbinary matrix. The rth row of \(t\) is an error pattern for a receivedbinary codeword whose syndrome has decimal integer value r-1. (Thesyndrome of a received codeword is its product with the transpose of theparity-check matrix.) In other words, the rows of \(t\) represent the cosetleaders from the code's standard array.
When converting between binary and decimal values, the leftmost column is interpreted as the most significant digit. This differs from the default convention in the bi2de and de2bi commands.
Examples An example is in "Decoding Table".
See Also decode, hammgen, gfcosets, "Block Coding"
References [1] Clark, George C., Jr., and J. Bibb Cain, Error-Correction Coding forDigital Communications, New York, Plenum, 1981.
\begin{tabular}{ll} 
Purpose & \begin{tabular}{l} 
Construct variable-step-size least mean square (LMS) adaptive \\
algorithm object
\end{tabular} \\
Syntax & alg = varlms(initstep,incstep, minstep, maxstep)
\end{tabular}

Description
The varlms function creates an adaptive algorithm object that you can use with the lineareq function or dfe function to create an equalizer object. You can then use the equalizer object with the equalize function to equalize a signal. To learn more about the process for equalizing a signal, see "Using Adaptive Equalizer Functions and Objects".
alg = varlms(initstep,incstep,minstep, maxstep) constructs an adaptive algorithm object based on the variable-step-size least mean square (LMS) algorithm. initstep is the initial value of the step size parameter. incstep is the increment by which the step size changes from iteration to iteration. minstep and maxstep are the limits between which the step size can vary.

\section*{Properties}

The table below describes the properties of the variable-step-size LMS adaptive algorithm object. To learn how to view or change the values of an adaptive algorithm object, see "Accessing Properties of an Adaptive Algorithm".
\begin{tabular}{l|l}
\hline Property & Description \\
\hline AlgType & \begin{tabular}{l} 
Fixed value, 'Variable Step \\
Size LMS'
\end{tabular} \\
\hline LeakageFactor & \begin{tabular}{l} 
LMS leakage factor, a real \\
number between 0 and 1. A value \\
of 1 corresponds to a conventional \\
weight update algorithm, while \\
a value of 0 corresponds to a \\
memoryless update algorithm.
\end{tabular} \\
\hline InitStep & \begin{tabular}{l} 
Initial value of step size when the \\
algorithm starts
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{l|l}
\hline Property & Description \\
\hline IncStep & \begin{tabular}{l} 
Increment by which the step \\
size changes from iteration to \\
iteration
\end{tabular} \\
\hline MinStep & Minimum value of step size \\
\hline MaxStep & Maximum value of step size \\
\hline
\end{tabular}

Also, when you use this adaptive algorithm object to create an equalizer object (via the lineareq or dfe function), the equalizer object has a StepSize property. The property value is a vector that lists the current step size for each weight in the equalizer.

\section*{Examples}

\section*{Algorithm}

For an example that uses this function, see "Linked Properties of an Equalizer Object".

Referring to the schematics presented in "Overview of Adaptive Equalizer Classes", define w as the vector of all current weights \(w_{i}\) and define \(u\) as the vector of all inputs \(u_{i}\). Based on the current step size, \(\mu\), this adaptive algorithm first computes the quantity
\[
\mu_{0}=\mu+(\text { IncStep }) \operatorname{Re}\left(\text { gg }_{\text {prev }}\right)
\]
where \(\mathrm{g}=\mathrm{ue}^{*}, \mathrm{~g}_{\text {prev }}\) is the analogous expression from the previous iteration, and the * operator denotes the complex conjugate.

Then the new step size is given by
- \(\mu_{0}\), if it is between MinStep and MaxStep
- MinStep, if \(\mu_{0}<\) MinStep
- MaxStep, if \(\mu_{0}>\) MaxStep

The new set of weights is given by
\[
\text { (LeakageFactor) w }+2 \mu \mathrm{~g}^{*}
\]

See Also lms, signlms, normlms, rls, cma, lineareq, dfe, equalize, "Equalizers"
References [1] Farhang-Boroujeny, B., Adaptive Filters: Theory and Applications, Chichester, England, Wiley, 1998.
\begin{tabular}{ll} 
Purpose & Convert vector into matrix \\
Syntax & \begin{tabular}{l} 
mat \(=\) vec2mat \((\) vec, matcol \()\) \\
mat \(=\) vec2mat \((v e c\), matcol, padding \()\) \\
{\([\) mat, padded \(]=\operatorname{vec} 2 m a t(\ldots)\)}
\end{tabular}
\end{tabular}

\section*{Description}

\section*{Examples} mat. The matrix mat has ceil(length(vec)/matcol) rows. entry is used repeatedly. vec2mat places extra entries in the output matrix if necessary.
mat \(=\) vec2mat(vec, matcol) converts the vector vec into a matrix with matcol columns, creating one row at a time. If the length of vec is not a multiple of matcol, then extra zeros are placed in the last row of
mat = vec2mat(vec,matcol, padding) is the same as the first syntax, except that the extra entries placed in the last row of mat are not necessarily zeros. The extra entries are taken from the matrix padding, in order. If padding has fewer entries than are needed, then the last
[mat,padded] = vec2mat(...) returns an integer padded that indicates how many extra entries were placed in the last row of mat.

Note vec2mat is similar to the built-in MATLAB function reshape. However, given a vector input, reshape creates a matrix one column at a time instead of one row at a time. Also, reshape requires the input and output matrices to have the same number of entries, whereas
```

vec = [1 2 3 4 5];
[mat,padded] = vec2mat(vec,3)
[mat2,padded2] = vec2mat(vec,4)
mat3 = vec2mat(vec,4,[10 9 8; 7 6 5; 4 3 2])

```

The output is below.
```

mat =
1 2 3
4 0
padded =
1
mat2 =
1
padded2 =
3
mat3 =
1 2 3 4
5

```
See Also
reshape
\begin{tabular}{|c|c|}
\hline Purpose & Convolutionally decode binary data using Viterbi algorithm \\
\hline Syntax & ```
decoded = vitdec(code,trellis,tblen,opmode,dectype)
decoded = vitdec(code,trellis,tblen,opmode,'soft',nsdec)
decoded = ...
    vitdec(code,trellis,tblen,opmode,dectype,puncpat)
decoded = ...
    vitdec(code,trellis,tblen,opmode,dectype, puncpat,eraspat)
decoded = ...
    vitdec(...,'cont',...,initmetric,initstates,initinputs)
[decoded,finalmetric,finalstates,finalinputs] = ...
    vitdec(...,'cont',...)
``` \\
\hline Description & decoded = vitdec(code,trellis,tblen,opmode, dectype) decodes the vector code using the Viterbi algorithm. The MATLAB structure trellis specifies the convolutional encoder that produced code; the format of trellis is described in "Trellis Description of a Convolutional Encoder" and the reference page for the istrellis function. code contains one or more symbols, each of which consists of \(\log 2(\) trellis. numOutputSymbols) bits. Each symbol in the vector decoded consists of log2(trellis.numInputSymbols) bits. tblen is a positive integer scalar that specifies the traceback depth. If the code rate is \(1 / 2\), a typical value for tblen is about five times the constraint length of the code. \\
\hline & The string opmode indicates the decoder's operation mode and its assumptions about the corresponding encoder's operation. Choices are in the table below. \\
\hline
\end{tabular}

\section*{Values of opmode Input}
\begin{tabular}{l|l}
\hline Value & Meaning \\
\hline 'cont' & \begin{tabular}{l}
The encoder is assumed to have started at the \\
all-zeros state. The decoder traces back from the \\
state with the best metric. A delay equal to tblen \\
symbols elapses before the first decoded symbol \\
appears in the output. This mode is appropriate \\
when you invoke this function repeatedly and want to \\
preserve continuity between successive invocations. \\
See the continuous operation mode syntaxes below.
\end{tabular} \\
\hline 'term' & \begin{tabular}{l}
The encoder is assumed to have both started and \\
ended at the all-zeros state, which is true for the \\
default syntax of the convenc function. The decoder \\
traces back from the all-zeros state. This mode \\
incurs no delay. This mode is appropriate when the \\
uncoded message (that is, the input to convenc) has \\
enough zeros at the end to fill all memory registers \\
of the encoder. If the encoder has k input streams \\
and constraint length vector constr (using the \\
polynomial description of the encoder), "enough" \\
means k*max (constr-1).
\end{tabular} \\
\hline 'trunc ' & \begin{tabular}{l}
The encoder is assumed to have started at the \\
all-zeros state. The decoder traces back from the \\
state with the best metric. This mode incurs no \\
delay. This mode is appropriate when you cannot \\
assume the encoder ended at the all-zeros state and \\
when you do not want to preserve continuity between \\
successive invocations of this function.
\end{tabular} \\
\hline
\end{tabular}

The string dectype indicates the type of decision that the decoder makes, and influences the type of data the decoder expects in code. Choices are in the table below.

\section*{Values of dectype Input}
\begin{tabular}{l|l}
\hline Value & Meaning \\
\hline 'unquant' & \begin{tabular}{l}
code contains real input values, \\
where 1 represents a logical zero \\
and -1 represents a logical one.
\end{tabular} \\
\hline 'hard' & \begin{tabular}{l}
code contains binary input \\
values.
\end{tabular} \\
\hline 'soft' & \begin{tabular}{l}
For soft-decision decoding, use the \\
syntax below. nsdec is required \\
for soft-decision decoding.
\end{tabular} \\
\hline
\end{tabular}

\section*{Syntax for Soft Decision Decoding}

> decoded \(=\) vitdec (code, trellis, tblen, opmode, 'soft ', nsdec) decodes the vector code using soft-decision decoding. code consists of integers between 0 and \(2^{\wedge}\) nsdec -1 , where 0 represents the most confident 0 and \(2^{\wedge}\) nsdec -1 represents the most confident 1 . The existing implementation of the functionality supports up to 13 bits of quantization, meaning nsdec can be set up to 13 . For reference, 3 bits of quantization is about 2 db better than hard decision decoding.

\section*{Syntax for Punctures and Erasures}
```

decoded = ...

```
vitdec(code, trellis, tblen, opmode, dectype, puncpat) denotes the
input punctured code, where puncpat is the puncture pattern vector, and where 0 s indicate punctured bits in the input code.
```

decoded = ...
vitdec(code,trellis,tblen,opmode,dectype,puncpat,eraspat)
allows an erasure pattern vector, eraspat, to be specified for the input
code, where the 1s indicate the corresponding erasures. eraspat and
code must be of the same length. If puncturing is not used, specify
puncpat to be []. In the eraspat vector, 1s indicate erasures in the
input code.

```

\section*{Additional Syntaxes for Continuous Operation Mode}

Continuous operation mode enables you to save the decoder's internal state information for use in a subsequent invocation of this function. Repeated calls to this function are useful if your data is partitioned into a series of smaller vectors that you process within a loop, for example.
decoded = ...
vitdec(...,'cont',...,initmetric,initstates,initinputs) is the same as the earlier syntaxes, except that the decoder starts with its state metrics, traceback states, and traceback inputs specified by initmetric, initstates, and initinputs, respectively. Each real number in initmetric represents the starting state metric of the corresponding state. initstates and initinputs jointly specify the initial traceback memory of the decoder; both are trellis. numStates-by-tblen matrices. initstates consists of integers between 0 and trellis.numStates-1. If the encoder schematic has more than one input stream, the shift register that receives the first input stream provides the least significant bits in initstates, while the shift register that receives the last input stream provides the most significant bits in initstates. The vector initinputs consists of integers between 0 and trellis.numInputSymbols-1. To use default values for all of the last three arguments, specify them as [], [] , [].
[decoded,finalmetric,finalstates,finalinputs] = ... vitdec (...,'cont',...) is the same as the earlier syntaxes, except that the final three output arguments return the state metrics, traceback states, and traceback inputs, respectively, at the end of the decoding process. finalmetric is a vector with trellis.numStates elements that correspond to the final state metrics. finalstates and finalinputs are both matrices of size trellis.numStates-by-tblen. The elements of finalstates have the same format as those of initstates.

\footnotetext{
Examples The example below encodes random data and adds noise. Then it decodes the noisy code three times to illustrate the three decision types that vitdec supports. For unquantized and soft decisions, the output of convenc does not have the same data type that vitdec expects for
}
the input code, so it is necessary to manipulate ncode before invoking vitdec. That the bit error rate computations must account for the delay that the continuous operation mode incurs.
```

% Encode data bits
trel = poly2trellis(3,[6 7]); % Define trellis
msg = randi([0 1],1000,1); % Random data
code = convenc(msg,trel); % Encode
tblen = 5; % Traceback length
% Map "O" bit to 1.0 and "1" bit to -1.0. Also add AWGN.
ucode = real(awgn(1-2*code, 3, 'measured'));
% Hard decision decoding using binary inputs
hcode = ucode<0;
decoded1 = vitdec(hcode,trel,tblen,'cont','hard');
% Soft decision decoding with quantized inputs
[x,qcode] = quantiz(ucode,[-.75 -.5 -. 25 0 . 25 .5 .75],...
7:-1:0); % Values in qcode are between 0 and 2^3-1.
decoded2 = vitdec(qcode',trel,tblen,'cont','soft',3);
% Soft decision decoding using unquantized inputs
decoded3 = vitdec(ucode,trel,tblen,'cont','unquant');
% Compute bit error rates, using the fact that the decoder
% output is delayed by tblen symbols.
[n1,r1] = biterr(double(decoded1(tblen+1:end)),msg(1:end-tblen));
[n2,r2] = biterr(decoded2(tblen+1:end),msg(1:end-tblen));
[n3,r3] = biterr(decoded3(tblen+1:end),msg(1:end-tblen));
disp(['The bit error rates are: ',num2str([r1 r2 r3])])

```

The output is similar to the following:
```

The bit error rates are: 0.064322 0.020101 0.01608

```

The example below illustrates how to use the final state and initial state arguments when invoking vitdec repeatedly. [decoded4;decoded5] is the same as decoded6.
```

trel = poly2trellis(3,[6 7]); % Define trellis
tblen = 5; % Traceback length
bitsPerPk = 100; % number of bits per package
SNR = 3;
% Initialize the initial states of the encoder and ...
% the decoder to default values
encState = []; decMetric = []; decState = []; decInput = [];
totalNumErr = 0; % Inititalize total number of bit errors
% Main loop
for pkCount = 1:10
msg = randi([0 1],bitsPerPk,1); % Generate random data
% Encode starting from encState and save last state
[code encState] = convenc(msg,trel,encState);
% Map "O" bit to 1.0 and "1" bit to -1.0. Also add AWGN.
ucode = real(awgn(1-2*code, SNR, 'measured'));
% Soft decision decoding using unquantized inputs. Start with the
% provided state and save the last state of the decoder.
[decoded,decMetric,decState,decInput] = ...
vitdec(ucode,trel,tblen,'cont','unquant',[], ...
zeros(bitsPerPk*2,1),...
decMetric,decState,decInput);
% Compute bit error rates, using the fact that the decoder
% output is delayed by tblen symbols.
if (pkCount == 1)
numErr = biterr(decoded(tblen+1:end),msg(1:end-tblen));
else
numErr = biterr(decoded,[prevMsg; msg(1:end-tblen)]);
end
totalNumErr = totalNumErr + numErr;
prevMsg = msg(end-tblen+1:end);
end
% Compute the bit error rate
BER = totalNumErr / (pkCount*bitsPerPk-tblen)

```

The output is similar to the following:
```

BER =
0.0050

```

For additional examples, see "Examples of Convolutional Coding".
For some commonly used puncture patterns for specific rates and polynomials, see the last three references below.

See Also convenc, poly2trellis, istrellis, vitsimdemo, viterbisim, "Convolutional Coding"

\section*{References}
[1] Clark, G. C. Jr. and J. Bibb Cain., Error-Correction Coding for Digital Communications, New York, Plenum Press, 1981.
[2] Gitlin, Richard D., Jeremiah F. Hayes, and Stephen B. Weinstein, Data Communications Principles, New York, Plenum, 1992.
[3] Heller, J. A. and I. M. Jacobs, "Viterbi Decoding for Satellite and Space Communication," IEEE Transactions on Communication Technology, Vol. COM-19, October 1971, pp 835-848.
[4] Yasuda, Y., et. al., "High rate punctured convolutional codes for soft decision Viterbi decoding," IEEE Transactions on Communications, vol. COM-32, No. 3, pp 315-319, Mar. 1984.
[5] Haccoun, D., and G. Begin, "High-rate punctured convolutional codes for Viterbi and sequential decoding," IEEE Transactions on Communications, vol. 37, No. 11, pp 1113-1125, Nov. 1989.
[6] G. Begin, et.al., "Further results on high-rate punctured convolutional codes for Viterbi and sequential decoding," IEEE

Transactions on Communications, vol. 38, No. 11, pp 1922-1928, Nov. 1990.
\begin{tabular}{ll}
Purpose & Generate white Gaussian noise \\
Syntax & \\
& \(y=\operatorname{wgn}(m, n, p)\) \\
& \(y=\operatorname{wgn}(m, n, p\), imp \()\) \\
& \(y=\operatorname{wgn}(m, n, p\), imp, state \()\) \\
& \(y=\operatorname{wgn}(\ldots\), powertype \()\) \\
& \(y=\operatorname{wgn}(\ldots\), outputtype \()\)
\end{tabular}

Description
\(y=w g n(m, n, p)\) generates an \(m\)-by-n matrix of white Gaussian noise. \(p\) specifies the power of \(y\) in decibels relative to a watt. The default load impedance is 1 ohm .
\(y=w g n(m, n, p, i m p)\) is the same as the previous syntax, except that imp specifies the load impedance in ohms.
\(y=w g n(m, n, p, i m p, s t a t e)\) is the same as the previous syntax, except that wgn first resets the state of the normal random number generator randn to the integer state.
\(\mathrm{y}=\mathrm{wgn}(. . .\), powertype) is the same as the previous syntaxes, except that the string powertype specifies the units of \(p\). Choices for powertype are 'dBW', 'dBm', and 'linear'.
\(\mathrm{y}=\mathrm{wgn}(. . .\), outputtype \()\) is the same as the previous syntaxes, except that the string outputtype specifies whether the noise is real or complex. Choices for outputtype are 'real' and 'complex'. If outputtype is 'complex', then the real and imaginary parts of \(y\) each have a noise power of \(\mathrm{p} / 2\).

Note The unit of measure for the output of the wgn function is Volts. For power calculations, it is assumed that there is a load of 1 Ohm .

\section*{Examples}

To generate a column vector of length 100 containing real white Gaussian noise of power 0 dBW , use this command:
\[
y 1=\operatorname{wgn}(100,1,0) ;
\]

To generate a column vector of length 100 containing complex white Gaussian noise, each component of which has a noise power of 0 dBW , use this command:
\[
\text { y2 } \left.=\text { wgn(} 100,1,0, \text { 'complex' }^{\prime}\right) ;
\]

See Also
randn, awgn, "Signal Sources"

\section*{A}
algdeintrlv function \(2-2\)
algintrlv function 2-4
alignsignals function 2-7
amdemod function 2-11
ammod function 2-13
arithdeco function 2-15
arithenco function 2-16
asymmetrical Jakes Doppler spectrum object 2-179
awgn function 2-17

\section*{B}

BCH coding sample code using various coding methods 2-214
bchdec function \(2-19\)
bchenc function 2-24
bchgenpoly function 2-31
bchnumerr function 2-33
berawgn function \(2-34\)
bercoding function \(2-38\)
berconfint function \(2-42\)
berfading function \(2-44\)
berfit function \(2-49\)
bersync function \(2-58\)
bertool function 2-61
bi-Gaussian Doppler spectrum object 2-185
bi2de function 2-62
bin2gray function \(2-64\)
binary matrix format
sample code 2-213
binary vector format
sample code 2-213
binary-to-decimal conversion \(2-62\)
biterr function 2-66
Bose-Chaudhuri-Hocquenghem (BCH) coding sample code
using various coding methods 2-214

\section*{C}
channel visualization tool plot (channel) 2-474
cma function 2-75
commscope package 2-77
commscope.eyediagram 2-78
compand function 2-132
conjugate elements in Galois fields
even number of field elements 2-144
odd number of field elements 2-287
constellations
hexagonal
sample code 2-277
convdeintrlv function 2-135
convenc function 2-137
conversion
binary to decimal 2-62
decimal to binary \(2-160\)
octal to decimal 2-469
vectors to matrices \(2-589\)
convintrlv function 2-140
convmtx function \(2-142\)
cosets
even number of field elements 2-144
odd number of field elements 2-287
cosets function 2-144
cyclic coding
sample code 2-214
for tracking errors 2-165
using various coding methods 2-214
cyclotomic cosets
even number of field elements 2-144
odd number of field elements 2-287
cyclpoly function 2-157

\section*{D}
de2bi function 2-160
decimal format
sample code 2-213
decode function \(2-163\)
deintrlv function 2-167
dfe function 2-168
dftmtx function 2-172
distspec function 2-174
doppler package 2-178
doppler.ajakes object 2-179
doppler.bigaussian object 2-185
doppler.flat object 2-189
doppler.gaussian object 2-191
doppler.jakes object 2-194
doppler.rjakes object 2-196
doppler. rounded object 2-199
dpcmdeco function 2-202
dpcmenco function 2-203
dpcmopt function 2-204
dpskdemod function 2-206
dpskmod function 2-208
dvbs2ldpc function 2-210

\section*{E}
encode function 2-211
equalize function 2-216
eyediagram function 2-218

\section*{F}
fec.ldpcdec object 2-236
fec.ldpcenc object 2-244
fft function 2-260
filter function
as a channel 2-261
Galois fields 2-262
filters
Galois fields
odd number of field elements 2-294
finddelay function 2-263
flat Doppler spectrum object 2-189
fmdemod function 2-268
fmmod function 2-269
fskdemod function 2-270
fskmod function 2-272

\section*{G}

Gaussian Doppler spectrum object 2-191
gen2par function 2-274
genqamdemod function 2-276
genqammod function 2-277
gf function 2-279
gfadd function 2-282
gfconv function 2-284
gfcosets function 2-287
gfdeconv function 2-289
gfdiv function 2-292
gffilter function 2-294
gflineq function 2-296
gfminpol function 2-298
gfmul function 2-300
gfpretty function 2-302
gfprimck function 2-304
gfprimdf function 2-306
gfprimfd function 2-308
gfrank function 2-311
gfrepcov function 2-312
gfroots function 2-314
gfsub function 2-316
gftable function 2-318
gftrunc function 2-319
gftuple function 2-320
gfweight function 2-324
gray2bin function 2-326

\section*{H}
hammgen function 2-328
Hamming coding
sample code using various coding methods 2-214
using various formats 2-213
Hamming weight 2-324
hank2sys function \(2-331\)
heldeintrlv function 2-333
helintrlv function 2-336
helscandeintrlv function 2-340
helscanintrlv function 2-342
hilbiir function 2-344
huffmandeco function 2-348
huffmandict function 2-350
huffmanenco function 2-353

\section*{I}
ifft function 2-354
intdump function 2-355
intrlv function 2-356
inverses in Galois fields
odd number of elements 2-292
iscatastrophic function \(2-357\)
isprimitive function 2-358
istrellis function \(2-360\)

\section*{J}

Jakes Doppler spectrum object 2-194

\section*{L}

LDPC decoder object 2-236
LDPC encoder object 2-244
lineareq function \(2-363\)
lloyds function \(2-367\)
LLR algorithm 2-238
lms function 2-370
log function 2-372
log-likelihood ratio (LLR) 2-238

\section*{M}
marcumq function \(2-373\)
mask2shift function 2-375
matdeintrlv function 2-377
matintrlv function 2-379
minimum distance \(2-324\)
minpol function \(2-388\)
mldivide function 2-390
mlseeq function 2-392
modem package 2-396
modem.dpskdemod object 2-397
modem.dpskmod object 2-401
modem.genqamdemod object 2-405
modem.genqammod object 2-409
modem.mskdemod object 2-413
modem.mskmod object 2-417
modem. oqpskdemod object 2-420
modem.oqpskmod object 2-425
modem. pamdemod object 2-429
modem. pammod object 2-433
modem. pskdemod object 2-437
modem. pskmod object 2-442
modem. qamdemod object 2-446
modem. qammod object 2-451
modnorm function 2-455
mskdemod function 2-457
mskmod function 2-460
multiple roots over Galois fields odd number of field elements 2-314
muxdeintrlv function \(2-462\)
muxintrlv function 2-464

\section*{N}
noisebw function 2-465
normlms function \(2-467\)

\section*{0}
oct2dec function 2-469
octal
conversion to decimal 2-469
oqpskdemod function 2-470
oqpskmod function 2-471

\section*{P}
pamdemod function 2-472
pammod function 2-473
plot (channel) function 2-474
pmdemod function 2-475
pmmod function 2-476
PN Sequence generator object 2-555
poly2trellis function 2-477
primpoly function 2-481
pskdemod function 2-484
pskmod function 2-487

\section*{Q}
qamdemod function 2-488
qammod function \(2-490\)
qfunc function 2-491
qfuncinv function 2-492
quantiz function 2-494

\section*{R}
randdeintrlv function 2-496
randerr function \(2-497\)
randint function \(2-500\)
randintrlv function 2-502
randsrc function \(2-503\)
rank
in Galois fields
odd number of elements 2-311
rayleighchan function 2-505
rcosfir function \(2-512\)
rcosflt function \(2-515\)
rcosiir function \(2-518\)
rcosine function 2-521
rectpulse function \(2-523\)
reset function
for channels 2-525
for equalizers 2-527
restricted Jakes Doppler spectrum object 2-196
ricianchan function 2-528
rls function 2-534
rounded Doppler spectrum object 2-199
rsdec function 2-537
rsdecof function 2-540
rsenc function \(2-541\)
rsencof function 2-543
rsgenpoly function \(2-545\)

\section*{s}
scatterplot function 2-548
semianalytic function \(2-550\)
seqgen package \(2-554\)
seqgen.pn function \(2-555\)
shift2mask function 2-565
signal constellations
hexagonal
sample code 2-277
signlms function \(2-568\)
ssbdemod function 2-571
ssbmod function 2-573
stdchan function 2-574
symerr function \(2-581\)
syndtable function 2-585

\section*{V}
varlms function 2-586
vec2mat function \(2-589\)
vitdec function 2-591

\section*{W}
weight, Hamming 2-324
wgn function 2-599```

[^0]: [1] Sayood, Khalid, Introduction to Data Compression, San Francisco, Morgan Kaufmann, 2000.

[^1]: Algorithm

 See Also signlms, normlms, varlms, rls, cma, lineareq, dfe, equalize,

 ## References

 Referring to the schematics presented in "Overview of Adaptive Equalizer Classes", define w as the vector of all weights w_{i} and define u as the vector of all inputs u_{i}. Based on the current set of weights, w, this adaptive algorithm creates the new set of weights given by
 (LeakageFactor) w + (StepSize) u*e
 where the * operator denotes the complex conjugate. "Equalizers"
 [1] Farhang-Boroujeny, B., Adaptive Filters: Theory and Applications, Chichester, England, John Wiley \& Sons, 1998.
 [2] Haykin, Simon, Adaptive Filter Theory, Third Ed., Upper Saddle River, NJ, Prentice-Hall, 1996.
 [3] Kurzweil, Jack, An Introduction to Digital Communications, New York, John Wiley \& Sons, 2000.
 [4] Proakis, John G., Digital Communications, Fourth Ed., New York, McGraw-Hill, 2001.

[^2]: \% Construct an object to compute log-likelihood ratio of

[^3]: \% Construct a demodulator object for 16-QAM demodulation. $h=$ modem. qamdemod \% note that default value of M is 16

[^4]: See Also qamdemod, genqammod, genqamdemod, pammod, pamdemod, modnorm, "Modulation"

[^5]: Examples For an example using random interleaving and deinterleaving, see "Example: Block Interleavers".

 See Also
rand, randintrlv, "Interleaving"

